Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Bogdan Tropak: Some algebraic properties of linear recurrences

- 73 ­the coefficients of (^o* * * * *^k-1J ar s rational integers. v Moreover g kCx) - 1 hence the coefficient of l is equal to k n g k (a) = 1 . i = 1 For the proof of second part of the theorem put g 0CxD=gCx3 and remark that g (x)+A g (x) = -i—i k 1+ 1 for 1=1, 2,..., k . x Now for a. = a . , l^j^k and for any n£G we have k k « 2 G n+1­1 = I k^co+A^J G n+ l_ t = 1=1 1=1 k k = fg CcO+A, + 5 g, CcOG , + 5 A, , G , kjn I - 1 r> +1 - 1 k-l+1 n+l-1 I =2 1=2 k-1 k-1 k-1 = A, G + 5 A. . G Jt l + 2 g, CcOG . = ^ A . Q + k n k-Lr> + L n + l k-ln-t-L 1=1 I =1 k-l I = O k-l k-l k + 2 g lCo5G n + l = G n+ k - 2 g l(«)G n + l = 2 S lCa>G n + l 1=1 1=1 L =1 because G , = G , g, Ca) . n+k n+k k From the above calculations we obtain 2 S LCa.)G n+ l l=i = 0 i. 5 g, (a. )G x. bl t n +1 - 1 1=1 X — F Í g ,...,G . 1 Í] ex. = g^n' * n+k-ij ** t = F fű ,G . ]c-l> k_ iA u g^ n* r> +1 * n + k-1 J k and the proof easily follows by the induction.

Next

/
Oldalképek
Tartalom