Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1990. Sectio Physicae (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 20)
Franczia Tamás: An arialytical inethod for calculating multicentre intégrais built up from GTF—S II.
- ó integral where k>0 because it- is the parameter of Fourier's cosinus transform with respect to p and G R is the curve to be seen below: Ze fV i § .iltz LCz- rx) 2+d 23 2 d z = J ,1 k p 2i 2 [Cp- rx^+d"] dp + a R lim - f CF £ a. .ilti CCz- rx} 2+d 23 2 dz ,i ki + oo dz = J -ao k p CCz- rx) 2+d 2: 2 icp- rx) 2+d 23 2 that results From lim R J R s -R 4-00 dp s S -co kp [Cp- rxD 2+d 2: 2 " icp- rx) 2+d 23 2 dp dp C48) C49) C50a) and ikz CCz- rx> 2+d 2] dz max zeC. .iki CCz- rx3 2+d 2] CSQb) is the application of the {[fCz} • lCyO • nR C50b5 C51 ) Jf Cz)dz r relation that is Cauchy's estimation where IC7O is the length of the curve -y. The denominator of the fraction in the right side of C50b) is equal to zero if z= Tx+id and accordingly in case of c rx) 2+d 2 and <p = arc tg Cd * C Px)1]. Since jexpCikR cosf) j=i in any case, |expC—kR sin tp> jil along C R if k^O and the numerator