Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1990. Sectio Physicae (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 20)

Anatol Nowicki: Composite spacetime from twistors and its extensions

- 20 ­procedures. One can show also that. the quaternionic formulation of i twistor theory leads to serious difficulties with quantization of twistors because of the noncommutitavity of quaternions. However, the description of the D=ő spacetime in the quaternionic framework allows us to use the same geometry as in case of the complex description of D— 1 spacetime. Acknowledgements The author would like to thank Professor Patkó György and the Department of Physics of Higher Pedagogical School in Eger for hospitality during his short stay in Eger. References: CI] Penrose,R. : Rep. on Math. Phys. , 12 C1977>, 63 and references here in. Penrose,R. — Rindler,W. : Spinors and Space—Time, vol. 1,2; Cambridge University Press 1984, 198Ó. [23 Ferber ,A. : Nucl.Phys. , B 132 C1976), S3. [33 Lukierski,J.- Nowicki,A. : Phys.Lett., 211B C1988), 276. [43 Hughston,L. P.- Shaw, V.T.: Class. Quantum Grav. 4 C1987), 869. Bengtsson,I. - Cederwall ,M .: Nucl.Phys., B302 C1988>, 81. Lukierski,J. — Nowicki,A. : Quaternionic Six—Dimensional Twistor and Supertwistor Formalism, in preparation [33 Wells,R.0. : Bull .Am. Math.Society, 1 C1979), 296. Eastwood,M.G.- Penrose,R.- Wells,R.O. : Comm.Math.Phys. ,78 C1981) , 303.

Next

/
Oldalképek
Tartalom