Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2004. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 31)

Tsangaris, P. G., Prime numbers and cyclotomy

Prime numbers and cyclotomy 7 (b) If n = 1, then (4) implies that { 1, if s is odd, — 1, if s is even. Remark. Theorem 1.2 should be considered as closely related to a corresponding Theorem of T. Apostol [1] on the resultant of the cyclotomic polynomials F m(ax) and F n(bx). Theorem 1.2. Let n,s be nat ural numbers. Denote by pi = I, pi, ..., p s all the s-th roots of unity, and Jet An (x) = F n(pix) ' •' F n(p s x) - F n{pi) • • • F n (p s). Then: (i) (x s-l)\f^(x). (ii) If n J(s, then (i-cr^inW"!.« where L° n(x) = K° n(x)/(x° Proof. The numbers pi, p2, ..., p s form a cyclic group. Hence A'n [pk ) = F n (pi p k)--- F n (p s p k) - F n (pi) • • • F n(p s) = 0 for k = 1,2,..., s. Also pix, .. ., p sx are the roots of v s — x s = (J (for x fixed). Thus K° n(x) = R v(v s - x*,F n(v)) - R(v s - 1, F n(v)) is a polynomial of x with integer coefficients. Since every pk is a root, of K^(x), part (i) follows immediately. Then i* (0 = /C'(C)/(C* - 1) and so K(0 = —Fn(pi) • • • F n(p s) = -R(o $ - l,F n(v)). In conclusion (1 - C 5)­1 = L' n{C)/R(v' - 1), F n(v)). Theorem 1.3. Let. n, k be natural numbers such that n > 1, n j(k and let d = (n , k). Define K*(x) = F n/ d{x k)' t,(n)/(t,(n/d ) - F n/ d(\)<)>(n)lHnld).

Next

/
Oldalképek
Tartalom