Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2004. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 31)

MÁTYÁS, F., Genaralize d Fibonacci-type numbers as matrix determinants

Genaralized Fibonacc i -type numbers as matrix determinants 41 2. Result We shall prove the following theorem. Theorem. Let the squence {G n}^L 2-fc be defined by (2), where p\G\ ^ 0 , pk = ±1 and k > 2. Let the matrix A u x n be defined by (•}). I hen for every n 1 G n = det(Anxn). Remark. In the case k = 2 our matrices A nx n are of tridiagonal ones. Proof. First we consider the case 1 < n < k. Then, for n = 1 det(A lx l) = 6'i. If n = 2 or 3, then 1 , I Gi —e 3G2-k\ r, Q /1 det 3 = Pi GI -e G 2-k VP 1 J - Pi GI + PKG 2-K = G 2 and / ^ 4 s Í \ 3-k \ = PiG 2 - E 4G 3-FCF 6 — PiG-2 - e 2G 3-k = PIG 2 + PkG 3-k = G 3. Suppose that G n_j = det(A n_ ;x n_ ; ) (j = 1,2,3) holds for an integer n, where 4 < n < A;. Then, developing the determinant i Gi -e 3G 2_ f e —e 4G det ­e3 Pi 0 1 1 o -e 3 Pi det (A, lX n) = det ( Gi -e 3 0 „•if c CT 2 — A; Pi -e 3 0 Pi —e nG n-i-k 0 0 -e n+ 1G n 0 0 \ 0 0 0 -e 3 Pi with respect to the last column, we have (let (A n Xn) — P\G n­- (-l)"+V + 1G, / Q x n — 1 i-k(~e 3) - Pi G n l) 2n+ 1e 4 n ~ 2Gn-k — PlG„-i + PkGn-k = G r i . That is, our theorem holds for every n , if I < » <

Next

/
Oldalképek
Tartalom