Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2001. Sectio Mathematicae (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 28)

NGUYEN CANH LUONG, The condition for generalizing invertible subspaces in Clifford algebras

Acta Acad. Paed.. Agriensis, Sectio Mathematicae 28 (2001) 87-113 THE CONDITION FOR GENERALIZING INVERTIBLE SUBSPACES IN CLIFFORD ALGEBRAS Nguyen Canh Luong (Hanoi, Vietnam) Abstract. Let A be a universal Clifford algebra induced by m-dimensional real linear space with basis {ei ,e2...,e m} . The necessary and sufficient condition for the subs­paces of form Li =h'n{e 0,ei ,. ..,e,„ ,e m+\ , • • • ,Cm+s } to be invertible is m= 2 (mod 4), s = l and e m+ 1=ei2... m (see [2]). In this paper we improve this assertion for the subspaces of the form L—lin{eo,eA 1 ,--, eA m > eA ?n + 1 f-> eA m_^ s }, where A,C{l,2,...,m} (i = l,2,...,m + s). 1. Introduction Let V m be ail m—dimensional (m > 1) real linear space with basis {ei , e 2,..., e m). Consider the 2 m— dimensional real space A with basis where e/ t-j := e t- (i — 1,2,..., in). In the following, for each K = {ki, k 2,..., k t] C {1, 2,..., m) we write ex = ejfcijfc a...jfc( with e^ = e 0, and so E — {e 0, e{!) ,..., e{ m} , e{i,2} , • • •, e{m-i,m} , • • •, e{i,2,..,m} } E — {eo, ei, . . ., e m, e 1 2,..., e m_ i m,. . ., e 1 2...,„.}• The product of two elements e A, es G E is given by (1) = (-l)» (j4nß )(-l) p(j 4' ß )^A S; A,B C {1, 2,. . ., m}, where jeB p{A,j) = tt{i eA:i> ]} A A B = (A\B ) U (B\A) and fjA denotes the number of elements of A.

Next

/
Oldalképek
Tartalom