Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2001. Sectio Mathematicae (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 28)

MÁTYÁS, F., Linea r recurrences and rootfinding methods

28 F. Mátyás where a — G\ — ßGo, b = Gi — aGo and suppose that a ^ 0. For example, U n = (a n - ß n) /(a - ß) and V n = a n + ß n if a, ß = (.4 ± VA 2 -4B) /2. Z. Zhang [7] has defined the sequence \w^ k ) d(A, B,G 0,Gi))°° in the folio­I ' J n=0 wing manner. (2) WW{A, B, Go, Gr) = (a k + ß k) W^ í< d - (n > 2), where k > 1 and d > 0 are fixed integers, while For brevity, we write W^j instead of (A, B, Go, G'i). It is obvious that and are the roots of the equation A 2 - (a k + ß k)X + a kß k = A 2 - 14 A + B k = 0 and [cvI > \ß\ implies |cv A :| > \ß\ k • Using the Binet formula for (2) we get that _ «,> - /?*<>) a» k - «/ - q'wffj) ß» k Wn,d - ak _ ßk from which r(Jfc) _ - b kß nk+ d (3) VV n,d a- ß yields for n > 0. It can be seen that is a generalization of G n because e. g. G n = Gn (A,B , Go, G'i) = W™ (A, B, G 0 ) G'i) . If W^ kQ ± 0 then let W {k ) n, 0 By (3), a ^ 0 and |cv| > \ß\, one can easily prove that lim R ( n k ) d = a d , 11 —• CO n' a

Next

/
Oldalképek
Tartalom