Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2001. Sectio Mathematicae (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 28)
DRESS, A. & LUCA, L., Real numbers that have good diophantine approximations
Real numbers that have good diophantine approximations 19 [3] ELSNER, C., On the Approximation of Irrationals by Rationals, Math. Nac.hr. 189 (1998), 243-256. [4] ELSNER, C., On Diophantine Approximations with Rationals restricted by Arithmetical Conditions, Fibonacci Quart. 38 (2000), 25-34. [5] HURWITZ, A., Uber die angenäherte Darstellung der Irrationalzahlen durch rationalle Brüche, Math. Ann. 39 (1891), 279-284. [6] Kiss, P., A diophantine approximative property of the second order linear recurrences, Period. Math. Hungar. 11 (1980), 281-287. [7] Kiss, P., On a simultaneous approximation problem concerning binary recurrence sequences, preprint, 2000. [8] Kiss, P., TICHY, R.F., A discrepancy problem with applications to linear recurrences I, Proc. Japan Acad. (ser. A) 65 (1989), 135-138. [9] Kiss, P., TICHY, R.T., A discrepancy problem with applications to linear recurrences II, Proc. Japan Acad. (ser. A) 65 (1989), 191-194. [10] RlDOUT, D., Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131. [11] ROTH , K.F., Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20, corrigendum 168. Andreas Dress Mathematics Department Bielefeld University Postfach 10 01 31 33 501 Bielefeld, Germany e-mail: dress@mathematik.uni-bielcfeld.de Florian Luca Instituto de Matemáticas de la UNAM Campus Morelia Apartado Postal 61-3 (Xangari), CP 58089 Morelia, Michoácan, Mexico e-mail: fluca@matmor.unam.mx