Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)

GÁT, G., On a theorem of type Hardy-Littlewood with respect to the Vilenkin-like systems

86 György Gát {x e Gm, ne N, f e L l(G m)). Then, y - x $ I s gives (1) \D n(y,x) I < cM s (s e N) ([2]). It is also known ([2]) that for y - x £ I s M s — 1 (2) . Y, XjM a+t{y)xjM,+t(x) = o (je N). t= 0 Moreover , Sim = / JG m (n e N, y e G m ). For more details on Vilenkin-like systems see e.g. [2]-[4j. The following theorem of type Hardy-Littlewood for the ordinary Vi­lenkin system is proved in 1954 by YANO ([8]). We generalize this result for Vilenkin-like systems. Theorem. Suppose that the following two conditions hold for function f e L l(G m) and for a y e G m­(1) M nlogM n J I n I f(x + y)~ f(y)\ dp(x) - 0 (n - oo), (2) \f(k)\ < ck~ 6 for some 8 > 0. Then S nf(y ) converges to f(y)­Proof. Denote by (3) M n log M nJ^ \f(x + y)~ f(y)\ dp(x) = '.e n - 0. (3) imphes that (4) \S MJ(y)-f(y)\ = M r I f(x) - f(y)dp(x) Uv) < log M n for n e N. Let k e N and n e N for which M n < k < M n+Also, let n > no e N be some integer depend on n for which r < n/n 0 that is the ratio of n and n 0 has a lower bound, where constant r £ N is discussed later. Skf(y)= / f{x)y2xj(y)xj(x)dn(x) JGm j= 0 . k~ 1 = / f(z+ y)Y^Xj(y)Xj{x+y)dfi(x) A— r\

Next

/
Oldalképek
Tartalom