Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)

ZAY , B., An application of the continued fractions for ... in solving some types of Pell's equations

An application of the continued fractions for \FD ... 7 (c) If N = 1 - 2k then M = {(»,»): x = (a - l)a 3m+ 1 - (ß - l)3* m+l 2(a — ß ) (d) If 1 < \N\ < 2k, N ^ 1 - 2k and N isn't a square of a natural number then M = 0 (empty set). Theorem 2. Let k (k > 3) be a natural number and D = (2k) 2 — 4. Let a and ß denote the zeros of f 2(x) = x 2 - 2kx + 1 with a > ß. Denote by M the set of positive (x, y) solutions of x 2 - Dy 2 — N . (a) If N = 4/ 2 and / (1 < I < y^f 1) is a natural number then ( a m - 3 m } M = {(x,y):x = l(a m+ß m), y = I —m> 1 j . (b) If N = (21 - l) 2 and I is a natural number (l < / < \ + yjk 2 - l) then , , 1\ Q 2 m- ß 2 m (c) If 1 < |A r| < and A isn't a square of a natural number then M = 0. Theorem 3. Let k (k > 2) be a natural number and D = k 2 - 1. Let a and 3 denote the zeros of fo(x) = x 2 — 2kx + 1 where a > ß. Denote by M the set of positive solutions of x 2 — Dy 2 = N . (a) If N = I 2 and 1 < I < then { I I (a n+ l - 3 n+ l) 1 M= <(x,y):x = -(a*+ l+ß n+ 1), y= [ J m> 1 . (b) If 1 < \N j < 2k — 1 and N isn't a square of a natural number then M = 0.

Next

/
Oldalképek
Tartalom