Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)

TSANGARIS, PANAYIOTIS G., A sieve for all primes of the form R2+(X-)-l)2 ....

A sieve for all primes of the form r 2 + (a-+l) 2 49 Theorem 4.9. Consider the Diophantine equation (Fk), k = 0,1,.... Let X + YV 2 be a non-negative integral solution of (Fk). Let x = (X -1)/2 and N(x) = x 2 + (x + l) 2. Then N(x) = Y 2 + k 2 . Moreover, the following are equivalent: (i) N(x) is composite, (ii) Y > k + 1. Proof. The equality N(x) — Y 2 -f k 2 follows by direct computations, while the equivalence of (i) and (ii) follows from Theorems 4.2 and 1.1. Theorem 4.10. Let N(x) = x 2 + (x + l) 2. Consider the Diophantine equation (F k), k = 0,1,.... Let X* + Y*\/2, (where r = 1,2, ..., m) be the only non-negative integral solutions of (F k) such that: 0 < Y* < k - 1 for k > 1, while, for k = 0 we have: X* = Y* — 1 for all r = 1, 2,..., m. Let X n + Y nV2 = (x; + y;%/2)(3 + 2>/2) n, X^ + y^ - (x; - y r*v^)(3 + 2>/2) n for ail n = 0,1,..., (for a typical r). Let x n = (X n - l)/2 and x n = (X n - l)/2 for every n — 0. 1,. . .. Let R n, R n, where n = 0,1,. . be the sequences defined by the recursive formmulae: R n +1 = 34 R n - Ä n_! - 8(2A; 2 + 1) for all n = 1, 2,..., where Ä 0 = Y/ + A: 2, R x = (2X r* + 3Y/) 2 + (for a typical r). R n+ l = 347^ - R n_ x - 8(2/c 2 + 1) for all n = 1, 2,. . ., where R' q = Y* 2 + R[ = (2X* - 3Y r*) 2 + k 2 (for a typical r). Then the following hold true: (I) Let k = 0. The for every integer n there exists an integer m such that: R n — R m __ N(x n) for every n > 0. Moreover, the numbers Ri, R 2,..are ail composite. (ii) Let k — 1, whence X* — 1, Y* = 0 for every r = 1,2,..., m. Then R n = R n = N(x n) for every n > 0.

Next

/
Oldalképek
Tartalom