Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)
ZAY , B., An application of the continued fractions for ... in solving some types of Pell's equations
#4n + 2 — ^4n + 2 = An application of the continued fractions for \FD... 13 (a - 2)g 2n+ 1 (ß — 2)ß 2n+ l 2 (g - 2)g 2n+ 1 - (/3 - 2)/j 2n+1 2(a-ß) a2n+2 ß2n + 2 tt 2 n+ 2 - /3 2 n+ 2 // 4n + 3 = - , K\ n +3 = — —— 2 2(q - ß) for n > 0 and (2a — l)g 2 n+ 2 + (2/3 — l)ß 2n+ 2 n 4 — 4n + 4 — ^4n-f4 = 2 (2a - l)a 2 n+ 2 - (2ß - l)/? 2 n+ 2 2(a-/5) for n > — 1 and f 1 for r = 3 \ Hi - DK 2 n = j 4, for r = 1 I = (-1 y1 c r+ l ,n> 0. I 5 — for r — 2 or 4 j Proof of Theorem 3. VD = \/A: 2 - 1 = (k - 1,1.2* - 2), for fc > 2 _ g n+ 1 + /5 n+ 1 , g n+ 1 - ß n+ l #2n+l — Ö j ^2n+l — #271+2 — &2n+2 = 2 7 <*-/? (a - l)g n+ 2 + (ß - l)ß n+2 2 (g - l)g n+ 2 - (ß - i)ß n+ 2 a- ß for n > — 1 and /w-= { 2fc ) £;:£}= (-ir'c r+ 1, » >o. Proof of Theorem 4. VD = y/k 2 + 1 = (Jfc, 2/c), for k > 1 g n+1 + ßn+1 _ _ ßn+1 H n — _ 1 An'— a — ß