Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)
ZAY , B., An application of the continued fractions for ... in solving some types of Pell's equations
An application of the continued fractions for \FD... 9 Using the definitions and the last assumptions we can finish the proof by induction for n: fn+ 2 (^1 , • • • 5 xn) = xnfn+ 1 { xl ,••••> xn-l) + fn{ xl xn~2) ~ xn9n+1 (^1 5 • • • > xn-l) + 9ti (#1 5 • • • , xn-2 ) = xn xl9n{ x2 , • • • •> xn-l) + xn9n1 { x3, • • • i xn1 ) ~\~ xl9n — l( x2 •> • • • , ^n-2) + 9n-2( x3, • • • ,Z n_ 2) = (zn/n(z2, • • • , ^ n-l) + fn-l{ x2,- • - , xn-2)) + (^n/n-l (^3, • • • 5 Zn-l) + ín-2 (^3 5 • • • , xn-2)) — x\ fn+ 1 { x2 1 ' • • 1 xn —I 1 xn) "i" fn( x3 1 ••'•> xn — \ 1 xn) +xig n +i(x 2,...,x n) + g n(x 3, ... ,x n) = g n+ 2{ xi,. • •, x n). Lemma 6. If X{ = x n+ 2-i holds for every i (1 < i < n -f 1) then fn+2(^11 • • • t xn) — fn+2{ x2, • • • , xn + 1 ) is also vaUd for every integer n (n > —1). Proof. This is evident for — 1 < n < 2, because /1 = 0, /2 = 1, /3(^1 ) = xl = x 2 - fz( x2 ) and /4(^1,^2) = X2 X\ + 1 = 2:32:2 + 1 = /4(2:2,2:3) (since xi = x 3). Let n > 2. Assume that if yi = y n-i holds for every i (1 < í < n — 1) then /n(l/l , • • • , Vn2) = /n(2/2, • • • , 2/n-l) is also valid. Let = x I +i for every i (1 < i < n — 1). Then Vi — xi+i = 2: n+2-( j+i) = 2; n_ t+ 1 = and so In{ x2 1 • • • 1 xn-l) = fn{ x3 1 • • • 1 xn)Using this equation, Lemma 5. and the relation X\ = a: n +i we obtain, that /n+2(^1, • • • 1 xn) = 9n + 2 { xl,...,x n) = X lg n+i (x 2 , . . . , X n) + 9n{ x3 , • • • , In) = X n-)_ 1 f n+1 ( x 2 , • • • 1 x n ) + /71(2:3, • • • » xn) ~ xn+l fn+1 (2:2 > • • • 5 xn) + fn( x2 , • • • , 2: n-l ) — fn + 2(2:2 5 • • • , 2: n + l )