Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)
PHONG, B. M., A characterization of the identity function
8 Bui Minh Phong Then we have <7~1 / / 2 o\ \ E I H^KIK-m) (m 2+3, 9) = X 1 1 ' / —m 2 — 3\ \ 1 ( /-3 „ 2 V V <i )) 2 V V ? m =0 \ x * ' ' ^ \ ^ 9|m2+3 1 + = ^ ( ^ - ( - 2 - 2 ^ 3 By our assumption, the last relation implies that jj*4 9(3) > 1. Thus, there are integers m G {1,..., q — 1}, 1 < n\ < q a — 1, (ni ,q) = l and 1 < n 2 '•= q a — ni < q a — 1 such that n 2 + m 2 +3 = q aNi (i = 1,2). It follows from the above relations that q a(N 2 - Ni) = (q a - m) 2 -n 2= q 2 a - 2q an u that is N 2 - Ni = q a - 2ni . Since (ni , q) = 1, we obtain that at least one of N\ or N 2 is coprime to q. Let n G {ni,n 2} and N G {Ni,N 2} such that n 2 + m 2 + 3 = g aiV, (N,q) = 1. Then a > 2 imphes that N < — - q<* < q a. (^-l) 2 + (?-l) 2+3 <r 'Thus, A7(<Z a) = f(N)f(q a) = /(iv g a) = f(n 2 + rn 2 + 3) = n 2 + m 2 + 3 = iVg a, which shows that f(q a) = q a as we wanted to establish. To complete the proof of the theorem, it remains to consider the cases q = 2 and q = 3. Let q— 2 and T = 2 a , where a > 3. Since —7=1 (mod 8), we have —7 is a quadratic residue modulo 2 a and therefore there exists n a G [0, 2 Qf_ 1 — 1] such that n\ +7 = n\+2 2 +3 = 0 (mod 2 a), and consequently, [n a + 2 a_ 1] 2 + 7 EE 0 (mod 2 a). Define JVi,