Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)
KlRALY, B., Residual Lie nilpotence of the augmentation ideal
Residual Lie nilpotence of the augmentation ideal 83 where hi £ (G') p™ ^k(G), a.i E R and every z l is from a set of coset representatives of (G'Y 7k(G) in G. For a large enough n by Lemma 3.1. hi- 1 EE p sX(k,hi) (mod A [k ]{RG)) for every i (z = 1,2,..., /) and the proof follow. If g E G' is a generalized torsion element of a group G then Q, g denotes the set of the prime divisors of the order of the elements gjk{G) E G/^k{G) for every k = 2, 3,.... Lemma 3.5. Let g E G' be a generalized torsion element of a group G, A an arbitrary subset ofü g, a E n pgAJ P(R) and let oo oo n nnvr'^c)). p(Efig\A k1 Then one of the following statements (1) if A is a proper subset of £l g, then a(g — l)a: E A^(RG) (2) if A = n 5, then a(g - 1) E AH(#G) (3) if A - 0, then (.g - l)x E AM(i?G) holds. Proof. It is enough to show that for an arbitrary natural number k the elements a(g — 1), (g — l)x , a(g - l)x are in the ideal A^(RG). If 9 e Jk{G) then by Lemma 2.5. (g1) E AW(RG), and the statements follow. Now let g £ "fk{G) and let be the prime factorization of the order of the elements gjk{G ) of the nilpotent group G/^k{G). It is clear that pi E £l g for every i = 1,2,..., s. Let A a subset of Cl g. With loss of generality we may assume that pi,p 2, ... ,pi E A and pi ^ A for i > I. Let g = gig 2 • • • g slk(G ) be the decomposition of the element g~fk{G) of the nilpotent group Gj^kiG) in the product of p %-elements g z^k{G) ( i = 1,2,. . .,5). Then 9 - 9x92 • • • g sVk, 9i E G\ i = 1, 2,..., 5 for a suitable yk E 7k{G). Then there exists m; (i = 1,2,..., s) such that 9Í r' G 7*(<?)•