Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

MÁTYÁS, F., The asymptotic behavior of the real roots of Fibonacci-like polynomials

60 Ferenc Mátyás Using the "bootstrapping" method for u = a -f 1 + 6[ we get the estimation a(a 2 + 2a + 2 ) 4 m (G + 2)(a + l) 2 ' which imphes the following form: #2m + l = a + 1 + ­a + 1 + S[ (13) V ' a(fl + 2) a(a 2 -f 2a + 2) 2 4 m ~ — — — [ a + 1) a + 1 (a + 2)(a + l) 4 ; Comparing (12) and (13) the desired approximation yields since a > 0. One can verify in the same manner that the estimation for g n also holds when a < — 2. This completes the proof. Remark. From our proof one can see that for large n g n = g' n if a > 0 while g n is the minimal real root if a < —2. A similar result can be proved for the polynomials G N{ — a, x + a, x). Theorem 3. Let GQ{X ) = —a and GI(x) — x + a where a £ R \ {0}. If etiher a > 0 or a < -2 then A \ {0} = {-^p^}, while A \ {0} = 0 if — 2 < a < 0. Furthermore for large n a(a + 2 ) q(q 2 + 2a + 2) 2 2 n ~ -^rr + (o+i)»(a+2) (a+x ) ' where G n(g n) = 0 and lim ^ 0. n—*oo Proof. For a real number Xo, by our Lemma 2, Xo £ A \ {0} if and only if (14) = ?== and xo > 0 a x 0+y/x 2 0 + 4 or (15) ° — — and XQ < 0 a x 0-y/xl + 4 holds. Substituting — XQ for XQ into (14) and (15) we get that . . X Q — a 2 (16) — . and xo < 0 a x 0- ^Jx\ + 4

Next

/
Oldalképek
Tartalom