Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)
SZALAY, L., A note on the products of the terms of linear recurrences
A note on the products of the terms of linear recurrences 51 and V V eillN" < sw q < c2 N W1=1 1=1 As before, leta; = a;i+'-- + a: I / and applying (9) we may write log Cl + X log \~j v I < log s + q log w < log c 2 + x log ^ | . Since log s > 0, we have (13) logc 3 + x log \j u\ < qlogw < log c 2 + zlog |7i| with c 3 = From (13) it follows that (14) X x c 4 - < log w < c 5 q q with some positive constants c 4, C5. Ordering the equality (11) and taking logarithms, by the definition of £{ we obtain Q = log sw dUi=i killn logfl 2 = 1 ai \ H ) < 1=1 i1 where Q / 0 if we assume, that x l > n 0 for every i — 1, 2,..., v, and c* is a suitable positive constant (i — 1,2, ..., v). Applying Lemma 2 and using the notation x = £1 + • • • + x v, it yields that (15) On the other hand Q < e~ c6( xi+---+ x^) — e~ Ce, x . (16) Q = log 5 + q log w - log d - log JJ \a,i\ — xi log I711 x v\og\iv\ 1=1 where logs = ei.logp! + j- e t\ogp t (see (10)). Now we may use Lemma 1 with 7T r = w = M r, since the ordinary heights of pj (j = 1,2,...,/), nr = 1 K'l and |7i| (i ~ 1, 2,.. . ,*/) are constants. So i?' = q. In comparison