Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

LIPTAI, K. and TÓMÁCS, T., Pure powers in recurrence sequences

38 By (1) we have Kálmán Liptai and Tibor Tómács (1 + e n) (1 + e x) n (1 + ^ ) a k+ 2a n+x+ x> +­+ x" = w * i=i from which (3) qlog w = (k + 2)log a + ^n + x + ^ log a + log (1 + £ n) k + log(l + £ x) + ^bg(l + e x.) i= 1 follows. It is obvious that x < n-\-x­(- ^ X{ < (k + 2)x . Using that log |1 -f£ 7 i=i is bounded and lim -ri(m)( SL i-) m = 0 (i = 2,..., 5), we have m ­—i rv^ ^ \ Ot / (4) X X CL — < log w < c 2 ­q q where C\ and c 2 are constants. Let L be defined by L := log G nG X l G x 2 • • • G X k aa 3 = |log(l + £ X)\. By the definition of £ x and the properties of logarithm function there exists a constant C3 that (5) L < e -c 3x On the other hand, by the Lemma with v = k + 4, Mk+ 4 = w,B' = q and B — x we obtain the estimation (6) L= q log to —log log G X i -log a-x log a ^ > e-C(lo g q log uj+x/q) where C depends on heights. By x^ < Kn heights depend on G n, ..., Gj< n> i.e. on n, Ii,k and on the parameters of the recurrence. By (4), (5) and (6) we have c^x < C(log <7 log w + x/q) < C4 log q log w , i.e. (7) x < C5 log q log w

Next

/
Oldalképek
Tartalom