Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

GÁT, G., On the Fejér kernel functions with respect to the Walsh-Paley system

108 György Gát As a straightforward consequence of Lemma 2 we get Lemma 3. sup| n|= m l-fi^c.+i)^' dx < eV2 s+ t , where m > s, í E N are fixed. Proof. If s > t, then by Lemma 2 it follows that / sup' \K n i.+D i 2.(x)\dx= I 2 a+ t­1dx = 2 t~ 1. Jl t\I t+ 1 \n\=m J I 3(e t) On the other hand, if s < t, then also by Lemma 2 we have / sup \K n(s+i) 2'{x)\dx < c c2 s+ t < JIt\I t +i |n|=m Jl t\I t+i c2 s . Lemma 4. fj\ I k sup| n| > A \K n(x) \ dx < eV2 k~ A , for all A > k G N. Proof. By Lemma 1 we have n \K n\ < I ? 5 = 0 consequently, - k — 1 p oo / sup \K n(x)\dx <2_ \ / / S UP IK n(x)\dx Jl\h \n\>A t= Q Jl t\I t +! m= A |n|=m /c — 1 oo ­-IlYI^ sup n\Kn(x)\dx t=0m=A JI t\It+i \n\=m k— 1 oo \ ( ^ f t= 0 m = \s-Q J lt\lt+1 N=m + SU P 2^(^)1 dx\ s=t+ 1 ^ Wf+i |n| = m / /c — 1 oo 1 m fc — 1 oo <cvy y <<=2^ 2 ? i— 0 m=A m=A The following Theorem shows that the maximal operator Tf: = sup \o nf\ ne p

Next

/
Oldalképek
Tartalom