Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1995-1996. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 23)

GRYTCZUK, A. and GRYTCZUK, J., A primality test for Fermat numbers

34 A. Grytczuk and J. Grytezuk positive integer m we have (2) B 2 m = (—l) m~ lmT(m)^2 2 m~ l(2 2 m - 1) where T{m) is defined by (la) and (lb). Proof. It is well known (see e.g. [1]) that B 2 m =(-ir­lmr m/ 22m+i(2 a™-l) where T m are coefficients in the power series expansion of the function tg x, i. e. 0 0 2-2771-1 tgx= E T m(2rn-l)\ ' TO = 1 x ' Thus, we are going to prove that T(rn) = T m for all rn > 0. In fact, we can write ,2m — 1 0 0 „2m 0 0 „2m-1 ^ T m(2m-1)!^ ( (2 ' (2m - 1)!. m­1 V ' m­0 v > m­1 v > By comparing coefficients of x 2m 1 we have T\ — 1 and Tm /(2m - 1)! - rm-i/2!(2m - 3)!+ (4) + T m-2 j4!(2m - 5)! = (­1) m_ 1/(2rn - !)!• 2m — I\ „ ( 2m — 1\ „ , ., m­1 Hence /9.TTJ — 1\ 2 4 jT^-.-^t-l) 1 and the proof of Lemma is complete. For the proof of the Theorem put m = 2 n~ 1. Then we have (-l)2 n­1r(2 n­1) (-1 )2 n­1T(2 n" 1) (5) B 2n = 22"-i( 22" _ !) 2 2 n~ lF 0F 1 • • • F n_i ' But from the well known theorem of von Staudt and Clausen if follows that if we write B 2 m = /D 2 m with {N 2 m,D 2 m) = 1 then D 2 m = Yl Pi P prime. p — 1 |2m

Next

/
Oldalképek
Tartalom