Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

HERENDI, T. and PETHŐ, A., Trinomials, which are divisible by quadratic polynomials

68 Tamás Herendi and Attila Pethő Lemma 7. Let suppose that gcd(n, k) = m. Then gcd (j,"" 1 2 ./„_! (X, J/ 2) , /­1 ™ d 2 • («, /)) = PROOF. By Lemma 2 (a) we know that F n(x) has [f] différent real roots. Let suppose that they are Ii, ..., £r„j. Then [f] F n(x) = le (F n) JJ (x - Xi) , i= 1 where le (F n) is the leading coefficient of F n y which is 1 if n is even and n +1 if n is odd. Then by Lemma 6 W yn mod 2 . /„ y 2) = le (F„) • H (* - W) ' m0< i i = 1 It is clear that (x — Xj • y 2) is irreducible, and by the unique factorization in a polynomial ring, this is the only possible factorization of y n mod 2 • f n {x,y 2). By Lemma 2(a) {x - t • y 2) \ y n~ l mod 2 •f n_ x (x,y 2) if and only if there exists j E {l, ..., [y] } such that t = — • Of course, then for ah Í, conjugate of t, (x - t • y 2) | y n~ l mod 2 • f n_ x {x,y 2). If t is such that (x-«V]ir 1,DDÍ ,-/n-i M and (x - t- y 2) \ y k~ l mod 2 • / f c_ 1 (x, y 2) then there exist 6 {1,..., [f] } such that , . 2 = . ^ x 2 from where we get either Û. — P, or £1 = (£»+i) (Ci+i) 0 Sn s/c S n . Without loss of generality we can suppose that £ J n = It is easy to see, if m = gcd(n,k) then (tó)™ = (Ck) m , which means that ££ is m­th root of unity and so (x - t • y 2) | y m~ l mod 2 • f m_ x (x,y 2). Eeversing, if (x - t • y 2) I y m­1 mod 2 • / m_ 1 (x, y 2) then there exists i G {l, ..., [f] } such that t = — and if m | n then there exists j 6 {l, ..., [f] } such that Cm = tó o r Cm = Çn'\ whic h means that (x - t • y 2) | y n~ l mod 2 • f n-i (x , y 2). We have m — 1 mod 2 = 1 if and only if n — 1 mod 2 = 1 and k - 1 mod 2 = 1. So if y | y n~ l mod 2 • f n_ x (x, y 2) and y | y*" 1 mod 2 •

Next

/
Oldalképek
Tartalom