Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)
HERENDI, T. and PETHŐ, A., Trinomials, which are divisible by quadratic polynomials
66 Tamás Herendi and Attila Pethő Using this we pro ve that ifl<i<n — 2, then (3) c n_ 2_; - b { mod 2 • b 2) - Bb k~ n+ i ™ d 2 • / f c_ n_ t(a, b)\ By (2) it is easy to see that (3) holds for i — 1, 2. Let 2 < i < n — 2 and suppose that (3) holds for every j with 1 < j < i. Then by (2) we get Cn-2-i = « • C n-2-(i-2) + b • C n_2_(i_l) - <$n-t,fc ' B = a • Cl + b • C 2 - 6 n-i tk • B _ bi-2 mod 2 . C s _ B . bk-n+i-2 mod 2 . ^ + £ . ^ where Ci = mod2 . f._ 2( ay) - B . B*-"*2 mod 2-A_ n+ i_ 2(a,6 2) C 2 = 6*" 1 mod 2 • /i_i(a,b 2) - B • B k~ n+ i~ x mod 2 • /,_ n+ í_!(a, 6 2) C3 = 62(i-i mod2) . + f l . f k_ n+ l_ 2(a :b 2) C 4 = fr 2«-"*'1 mod 2) • A_ n+ l_i(a,6 2) + a • / f c_ n+ I_ 2(a, ö 2). From this by Lemma 3 we get (3). Using (2) and (3) we obtain 0 = a • ci + b • c 0 - öl,* • B = a • (b n~ 3 mod 2 • / n_ 3(a, 6 2) • 6 fc_3 mod 2 • A_ 3(a,6 2)) + +6 • a • (62mod 2 • / n_ 2 (a, 6 2) • ^2mod 2 • / f c_ 2 (a, 6 2)) - 6 lt k • B = hn-3 mod 2 . ^2(n-2 mod 2) ( a, 6 2) + a •/ n_ 3 (a, 6 2 )) . ^-3 mod 2 . ^2(k-2mod 2) ^ &2) + f l . ^ ^ &2)) + Using Lemma 3 we get (4) 0 - b n~ l mod 2 • fn—i (a, b 2) — B • b k~ l mod 2 • (a,6 2) , which proves the first assertion. This imphes b k~ l mod 2 • 1 ( a, b 2) = 0 if and only if b n~ l mod 2 • / n_i (a, b 2) = 0. By (2) and (3) (5) A = a • (b n~ 2 mod 2 • / n2(a,6 2) - B • b k~ 2 mod 2 • A_ 2(a,6 2)) . (b) If b k~ l mod 2 • f k-1 (a, 6 2) ^ 0 then from (4) we get bn-1 mod 2.^ ( aj 62) (6) 5 = mod 2 . f k_ l (a, 6 2)