Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

HERENDI, T. and PETHŐ, A., Trinomials, which are divisible by quadratic polynomials

Trinomials, which are divisible by quadratic polynomials 63 Let consider the sum: I — II + III: F n(x) • F k(x) - (x) -F k(x) + (~l) k • x k • F n_k_i (x) = F n(x) • F k.i(x) - F n^(x) • F k-t{x) - (-1)* • x'­1 • F n. k(x)+ x • (.F n(x) • F k_ 2(x) -F n_ 1(x) • F k. x(x) + {-l) k • x k~ 2 • F n_ k+ l(x)) . The right hand side of this équation is equal to zéro by the induction hy­pothesis, so the equality holds for k too. Lemma 2. (a) The polynomial F n{x) has degree [y] and its roots are — ? where 1 < j < [y] and £ n+i is a n + 1-th primitive root of unity; (b) F n(x) has a rational root if and only if gcd(n + 1,12) > 3. PROOF. (a) By définition we have Fo(x) = F\(x) = 1, so deg(Fo(x)) = [|] and deg( JFi(a:)) = [|]. Let n> 2 and suppose that deg (F k(x)) = if k < n. It is easy to see that the leading coeffitient of F k(x) is positive. So deg {F n(x)) = deg (fn-i(s) + x • F n_ 2(x)) = " fi " = max(deg( JF n_i(x)),deg( JF n_2(x)) + 1) = . Let be a récurrence sequence with the définition: u m = r • u m_i + 5 • Um-2, where r, s ^ 0, r 2 + 45 ^ 0 and \u 0\ + |wi| > 0. Then u m = a • a m + b • ß m(m = 0,1, 2,. . .), where a, ß is the two différent roots of the polynomial z 2 - r • z - s and a = U of_~ a U l, 6 = U l ^ 9 a a (see e. g. [2]). Let suppose now that t is a root of F n(x) and define {u m}™ = 0 ^y ^e following recurrence: Uq = U\ = 1 and u m := w m_i + t • u m-2 if m > 2. It is clear that F m(t) = u m ( m = 0,1,2,...), and if t ^ then v/T+lí-l /l-0T+4í\ m V /TT4í + 1 /1 + VT+4Í u m = _ ^ • + 2VT+4 t V 2 / 2VTT4Í V 2 / / - n—:—TT\ "i+l / „ rz 7— \ m-fl" 1 l ( 1 + y/1 + 4A / 1 - y/1 + 4* VI + 41 IV 2 By the choice of t we have 0 = F n(t) = u n which means i + VïTTt\ n+ l /î-x/ITïP^ 1 -0, 1. e.

Next

/
Oldalképek
Tartalom