Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

GRYTCZUK, A., On a theorem of G. Baron and A. Schinzel

On a theorem of G. Baron and A. Schinzel ALEKSANDER GRYTCZUK Abstract. G. Baron and A. Schinzel [l] generalized the wellknown Wilson's theo­rem. In this paper —under Theorem B—an extension of their theorem can be found. 1. Introduction In 1979 an extension of Wilson's theorem was given by G. Baron and A. Schinzel [1]. Namely they proved the following: Theorem A. For any prime p and any residues X{ mod p we have Xa(l) { xa( 1) + Xa(2)) • • • ( xa( 1) H + xa(p-l)) = (1) crÇSp— 1 = H \-Xp-iY' 1 (mod p) where summation is taken over ail permutation a of {1, 2, • • • ,p — 1}. In the present Note we prove the following extension of Theorem A: Theorem B. For any prime p and any residues X{ mod p and for fixed natural number k such that p — l\k we have Y^ + ®ï(2)) " " " (®£(1) + * * * + Xt(p-l)) = (2) ^eVi - (xí + + (mod p) and if Xi ^ 0 are residues mod p, p is an odd prime such that p — 1 | k then Xa(l) (®í(l) + Xt(2)) • • • ( Xa(l) + • • • + (3) vés,,-! +®Í(P-I)) = 1 ( MO D P) where summation is taken over ail permutation a of {1,2, • • • ,p — 1}. We note that Ch. Snyder [3] gave interesting applications of (1) to differentials in rings of characteristic p.

Next

/
Oldalképek
Tartalom