Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

NAGY, K., Norm convergenc e of Fejér means of certain functions with respect to respect to UDMD product systems

Norm convergence of Fejér means of certain functions . . . 125 c 3_ie{o,i} i I,...,f s_i6{0,l} £ s_l=£ ä_l=0 «•-Y wer )«'-ï w«-! 1 («MA w := := Z) fxe(x)xï(*)x7{t)Xi(t)dX(t). £,£G{0,1} 3­2X{0}/x / Xe)x?(a; )x7(í)Xc (í A ) / 0 if £ k+i = £k+i,-,£ s-i = £ s-i- (see [3], r x hk [4]). From this fact and \<f>j(x)\ = 1 ( J GN , Î GÎÎ ) we get / |/CiK<)l 2rfA(i)< ii d\(t) < ±2 kr = r. J hk £, £'6{0,l}ä-2 x{0 } J x ck + l = ik+l cs-l= fs-l * Let P S}f and observe that "Ii - / = <£(/ -P) + (P-f) + tâP- P). Using the fact {S lS Jf){x) = (S mi n(i,j)f){ x) we ca n show p = \ Ê< 5>/ ­s"/) = ­i= 1 From the inequality II/ <«*(/,2-) k*(/-i>)MI< / |/(t)-P(t)||ir;(x,i)|dA(i) <u x(f,2~ s) [ \K*(x,t)\dX(t)<Su x(f,2~ s), Jü that is we have and

Next

/
Oldalképek
Tartalom