Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

GÁT, G., On a norm convergence theorem with respect to the Vilenkin system in the Hardy spaces

On a norm convergence theorem with respect to the Vilenkin. . . 105 where A k: = Í mfc/2, 2\m k ' \(m f c- l)/2, 2/mjt' for m k > 4. If m k < 4, then f k : = 0. It is easy to see that n > M^+i implies Snfk = fk and n < M k implies SVJ^ = 0. _ If M k < n < M k + 1, then let y G 4(0, /), l / 1, A f c and a; G 4(0,1) U I k( 0, Ajt). Consequently, y - x G h \ h+i , jfc-i njt -1 ^nfo - = E ^ ^ ^ - *) + M k £ ^ - *)' {i}) n(y - x) = r k k (y - x)) thus -1 p-0 \S nfk\ > h (0,0 / Jt—i lé? IAI+ \i=o , , ,r n k h(y-x)-l , = :(!) + (2). 1(1)1 < ^ is trivia L (2) = ((Í - A f c)c f c) - 1 For l < [f] r f c((/ - l)ejt) - 1 r f c((Z - A k)e k) - 1 r k((l - A k)e k) - 1 < S1H 7T That is, (2)> 1 n k(l~ 1) sm 7T— ­m k m k sin 7T —­m k m, t — C. < C. These estimations give m k /4] Iis-Alli > £ / * ^ Ë 0,0 (= 2 Sin 7T m f c — C sm 7T • mfc > c log n k - c.

Next

/
Oldalképek
Tartalom