Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1993. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 21)

Bui Minh Phong: Recurrence sequences and pseudoprimes

divergent In [4] we extended this result showing that the series i-i­log,-i n is divergent, where n runs through all pseudoprimes to base c which are products of exactly s primes. Here log, denotes the k times iterated logarithm. It was proved in [7] that Theorem 2.15. ([7]) LetU = U(LJvf) be a non degenerate Lehmer sequence. The series where n runs through all Lehmer pseudoprimes which are products of exactly s(> 3) distinct primes, is divergent REFERENCES [1] P. Kiss & B. M. Phong, On the connection between the rank of apparition of a prime p in Fibonacci sequence and the Fibonacci primitive roots, Fibonacci Quart 15 (1977), 347—349. [2] P. Kiss & B. M. Phong, On a function concerning second order recurrences, Ann. Univ. Sei. Budapest Eötvös, Sec. Math. 21. (1978), 119—122. [3] P. Kiss & B. M. Phong, Divisibility properties in second order recurrences, Publ. Math. Debrecen 26 (1979), 187—197. 140

Next

/
Oldalképek
Tartalom