Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1991. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 20)

Kristyna Grytczuk: Functional récurrences and differential équations

- 53 ­PROOF OF THEOREM B. Let us denote LCy> = P v c n 5 + P y t n" 1 J + ...+ p y J O l J Tt J then for y = s„ we have 1 o, 1 1 = L( s0. i' ui) = PoKt* UÍj tn5 + ••• - PnKl' Ut]­It is easy to see that is *uM' = s ' *u* + \*s •u*~ 1 ,u' = u* is' L o. l lJ o, i t o, 1 1 1 l [ o, i * u 4J Putting in the last equality s' + x * — = s O, 1 ^ YL ± 1. 1 we get is = s u* . L o. 1 1 J 1.1 1 Similarly we get is -uM Ck 5= k -uM'-s, -U* [ O, 1 1 J ^ k - 1 , 1 1 J k . 1 1 for k—2 , 3, . . . , n . Thus we get Lf s« 's f 'u*+...+P *s *u*= L 1 . O 1J O n.l 1 1 n-1,1 1 n O, 1 1 = fp *s +P *s + ...+P *s . L O n.l 1 n - 1 . 1 n O, 1J 1 We remark that from (d) (6) det S = 0. follows. On the other hand from <d> we have C 7) Det S = s *D -s . *D +...+s n C-l> D, n, 1 1, O n-1,1 1,1 O, 1 1, n • 1 Since P._ t = <-l) j D 4 for j— 0,1,...,n+1 thus by C6) and C75 it follows

Next

/
Oldalképek
Tartalom