Vízügyi Közlemények, 1959 (41. évfolyam)
4. füzet - V. Kisebb közlemények-Ismertetések
(Ki) верхней кульминации, которые наблюдались по водомерным постам „а", ,,Ъ", ,,с"... и т. д. (рис. 4. и таблица I.). Связи между постами — в соответствии с характером режима уровней и имеющихся данных — могут быть анализированы по нескольким методам (см. уравнения (3), (6), (7), (8) и (9); Ah 2 есть подъем в нижнем створе после момента верхней кульминации, Q n q обозначают пиковые или с прохождением пика одновременные расходы воды). Связи с несколькими переменными в общем были сконструированы или применены в соответствии с (15) т. е. в разложении на парциальные функции с тремя переменными (рис. 5 и 6). На рис. 7, 8, 9 и 10. указаны примеры по различным возможностям разложения. Имеется несколько возможностей контроля и поправки связей определенных графическим выравнением. 1. Сравнение тесноты связей определенных для тождественных отношений помощью различных придаточных переменных величин (рис. 11 ). 2. Выравнение той же группы точек помощью величин различных систем (рис. 12, 13,14 и 15). 3. Совмещение изометрических кривых определенных выравниванием между точками и составленных посредственно из связей с двумя переменными (рис. 19, 20 и 21). (Более подробное резюме дается на английском языке.) (Резюме автора, перевод от ннж. Г. Чегиди.) PROBLEMS RELATING ТО THE CONSTRUCTION AND INTERPRETATION OF GAGE RELATIONS By K. Szesztay, Candidate of Technical Sciences, and 1. Zsuffa (For Figures and Tables see the Hungarian text on pp. 79 — 105) UDC. 551,482.215 Gruphical aids of flood forecasting, prepared during the recent years for Hungarian watercourses —and primarily for the Danube anil Tis/.a Rivers —rely mainly on gage relationships expressing relation between peaks occurring in subsequent sections along the watercourse. Simple gage relationships of two variables have usually been found satisfactory for adjacent gages, the distance between which is never in excess of 30 to 40 kilometres for the watercourses under consideration. Two-variable relationships for adjacent gaging stations have been compiled in the profile illustred in Fig. 1, by aid of which a forecast prepared for the key stations can be transferred directly to any intermediate section. Other data relating to water-regime or bed conditions, can similarly be compiled in a profile. Cross-sectional areas F and mean flow velocities v (respectively, the product of these two : the discharge Q) can be obtained from Figs. 2 and for any section along the watercourse, and for any stage. Relations between peaks observed at distant gages (spaced several hundred kilometers from each other) can be expressed by nonlinear relationships containing several variables. As indicated by experience gained during evaluation work, stages /l'a 0, h {P, h^ . . . etc. observed at the sections "a", "b", "c" . . . etc. along the river system at the time of an upstream peak Л, (Fig. 4) are practicably adopted as parameters for these relationships. Stations characterizing channel storage may be selected on basis of examples compiled in Table I. In addition to the interpretation according to the relationship thus obtained, and expressed by Eq. (3), one according to Eq. (6), which is based on the rise in stage A h 2 in a downstream section after the occurrence of the upstream peak, and one according to Eqs. (7), (8) and (9) which presume the knowledge of discharge data, may also prove expedient. With the discharge data available the interpretation according to Eq. (13) may also become practicable, where also the upstream peak is expressed in a complex form. Gage relationships have been established from observation data using graphical correlation. The coaxial method described in the literature (10) was found extremely cumbersome, whenever the number of variables exceeded four, owing to the close interrelation of individual parameters. The method of resolving the relationships containing several variables into such involving no more than three according to