Bogárdi János: Vízfolyások hordalékszállítása (Akadémiai Kiadó, Budapest, 1971)

Első rész. 1. A hordalékmozgás elmélete - 1.1 A hordalék és mozgására vonatkozó vizsgálatok - 1.1.3 A vízfolyások hordalékszállítására vonatkozó klasszikus tételek

MacDougall szerint, ha az egységnyi szélesség vízhozama q, ennek kritikus értéke qc és S az esés, akkor az egységnyi szélesség hordalékhozama qB = aS\q-qc) (1.1.3-35) ahol n — 1,25 és 2,0 között változik. Gilbert szerint a&J» (1.1.3-36) Gilbert eredeti összefüggésében a hordalékhozamot az esés, a vízhozam és a hordalék jellemzőinek függvényében adta meg. A fenti képlet eredeti összefüggé­sének kísérleti értékeléséből származott. A képletben a és b állandókat jelölnek. Straub abból a feltevésből indul ki, hogy a szállított hordalékmennyiség súlya a szállító erő függvénye. Ez az erő pedig kifejezhető a hidraulikai elemekkel. Aszerint, hogy milyen hidraulikai elemet vonunk be a számításba, más és más összefüggés adódik. Ha az esést és a vízhozamot választjuk, akkor ahol ip a hordalékjellemző, c pedig a sebesség-tényező. A szállított hordaléksúlyt a sebességekkel, illetőleg a hatékony sebességekkel fejezi ki Donat, J., Mühlofer, L., Schaffernak, F., Poljakov, B. V., Lopatin G. B., Goncsarov, V. N., Levi, I. I., Velikanov, M. A. és mások. Ezek közül Donat és Mühlhofer képletét említjük meg. Donat szerint qB = -j^v2(v2-v2c) (1.1.3-38) Ez az összefüggés — mivel a sebességek négyzete szerepel benne — tulajdonkép­pen burkoltan a hordalékmozgató erőt vonja be a számításba. Mühlhofer az Inn folyón végzett vizsgálatai alapján ugyancsak a sebességek négyzetével fejezi ki az egységnyi szélesség hordalékhozamát. Szerinte qB = kv\v> - vl) (1.1.3-39) A felsorolt kapcsolatok a görgetett hordalékhozam meghatározására vonat­kozó első próbálkozások ereményei, és a hozam számszerű meghatározására semmiképpen sem ajánlhatók. Ezeknek az összefüggéseknek tulajdonképpen csak az elméleti fejlődés áttekintése szempontjából van jelentőségük. Du Boys, Schoklitsch, Meyer-Peter és Levi összefüggését, mivel ezeket elmé­leti szempontból célszerű a hordalékhozam összefüggések vizsgálatába bevonni, részletesen az 1.2.6 és az 1.2.7. fejezetekben fogjuk tárgyalni. 91

Next

/
Thumbnails
Contents