Technikatörténeti szemle 11. (1979)

TANULMÁNYOK - Vajda Pál: Creative Hungarians in mathematics, astronomy, physics, chemistry, technical sciences and industry. A selected bio-bibliography

525.), Mezei A.: Portrait of an Inventor (= Hungarian Life Apr. 1958. p. 52.), VPMS Apr. 1959. p. 2., M. Gohér—K. P. Kovács: A. Mándi -f- (= ATH 76/1974. pp. 249—253.) MÉRAY-HORVÁTH, Károly (1859—1938). Engineer. In 1885 he invented the casting machine for typesetting single letters. Before the first World-War the „Electrotypograph” manufactured in Germany and France was believed to represent the casting machine of the future. Unfortu­nately the first World-War stopped its spreading in the world. Herrmann, G.: Geschichte der Setzmaschine und ihre Entwicklung bis auf die heutige Zeit, Wien pp. 140—144., Zimmermann, FDer Elektrotypograph (= Klimsch’s Jahrbuch V. 1909. pp. 24—33.) HPP MIHÁLY, Dénes (1894—1953). Mechanical engineer. Mihály began his historical photoelectric and sound recording investigations as early as 1912. In August 1928 he introduced the first television at the official exhibition arranged by the German Post Office in Berlin. In November of the same year Mihály transmitted motion pictures. The historical culmination of Mihály’s accomplishments came at 11 p. m. on 31. Januar 1929 when the Berlin-Witzleben radio station broadcast the first moving television program in history. Langer, N.: Das elektrische Fernsehen „Telehor” (= Umschau 1924. pp. 525— 532.), Thun R.: Fernsehen und Bildfunk, Stuttgart 1934. pp. 59—60., Dyonis Mi­hály -f- (— Fernmeldetechnische Zeitschrift 1953. p. 493.), Pfau E.—Jameson E.: Weltmacht Fernsehen, Stuttgart 1967. pp. 33—39., 58—59. NEUMANN, János (1903—1957). Mathematician. (John von Neumann) Neumann, one of the greatest mathematicians of our time, started his work in mathematical logics and set theory, and he is now thought of as the man who gave precision to this theory. In quantum theory, the mathematical foundation of the measurement theory of physical quantities was his greatest achievement („pure quantum mechanical conditions”). Neumann was also largely responsible for advances made in the theory of games and for the development of opera­tional research. Neumann’s efforts were a critical contribution to the deve­lopment of electronic computers (the use of the binary system, programme storage, instruction scheme, automatic programme modification). S. Ulam: John von Neumann, 1903—1957 (= Bull. Amer. Math. Soc. 64/1958. pp. 1—49.), S. Bochner: John von Neumann (= National Academy of Sciences, Biographical Memoirs 32/1958. pp. 438—457.), H. H. Goldstine—E. P. Wigner: Scientific Work of J. von Neumann (— Science 125/1957. pp. 683—684.), Str. Thomas: Men of space vol. 1. New York 1960, p. 181—203., H. H. Goldstine: The Computer from Pascal to von Neumann, Princeton (USA) 1972., Kaufmann H.: Die Ahnen des Computers, Düsseldorf 1974. pp. 167—8., 177—182. Hughes, Th.P.: ENIAC, Invention of a Computer (= Technikgeschichte 42/1975. pp. 148—165.), Brainerd, J. G.: Genesis of the ENIAC (= Technology and Culture 17/1976. pp. 482—488.), Pinch T. J.: What does a proof do if it does not prove? A study of the social conditions and metaphysical divisions leading to David Bohm and John von Neumann failing to communicate in quantum physics (= Everet Men­delsohn (ed.): The social production of scientific knowledge, Dordrecht 1977. pp. 171—216.), F. J. Gruenberger: The History of the JOHNNIAC (= Annals of the History of Computing 1/1979. nr. 1. pp. 52—64.) ZAB, DHS, ABE, NAS 64

Next

/
Thumbnails
Contents