A Magyar Hidrológiai Társaság XXXI. Országos Vándorgyűlése (Gödöllő, 2013. július 3-5.)
10. szekció. SZÁMÍTÓGÉPES MODELLEK ALKALMAZÁSA A VÍZGAZDÁLKODÁSBAN - 1. Albert Kornél (KDVVIZIG): Gázlók és hajóút szűkületek mederfelmérése a Duna magyarországi szakaszán - 2. Barla Roland: Ráckevei (Soroksári) Duna-ág adott szegmensének vízminőségi modellezése - mintaprojekt - 3. Jakab Jenő (Országos Vízügyi Főigazgatóság): Idősorok zajszűrése gyors Fourier-transzformációval
3. Fourier - transzformációban és Inverz Fourier - transzformációban rejlő lehetőségek A 2. pontban leírtak szerint látható, hogy bizonyos feltételek mellett függvények előállíthatok Fourier - sorba fejtéssel is tetszőleges pontossággal. Ilyen diszkrét időpontokban értelmezett függvény lehet akár egy vízállás idősor is. Tehát lehetőségünk van például a vízállás idősorainkat különböző frekvenciájú egységnyi harmonikus függvények különböző arányú összegeiként is értelmezni. Munkám elején élek azzal a feltételezéssel, hogy általánosságban a gyakorlatban előforduló vízmozgások valós változása lassabb, mint a mérőműszerek által belekevert zaj irányváltozása. Tehát a vízállás idősor frekvenciák szerinti un. spektrális felbontásánál (ez lényegében ak(k) és bk(k) függvények) van esély különböző, domináns frekvenciatartományok elkülönítésére, eredetüknek beazonosítására. Az at(k) és bk(k) függvények meghatározását az irodalomban Fourier - transzformációnak hívják. Az integrálások során ak(k) és bk(k) függvények csak a k-tól (a frekvenciától) fognak függeni adott g(x) esetén, x-től (x az idősornál a független változó: az idő) nem. A frekvenciatérben tehát bizonyos frekvenciájú komponensek törlése lehetővé teszi a törölt frekvenciájú komponens törlését az idősorból is az inverz transzformáció után. Az inverz transzformáció az a számítási lépcső, amely során összegalakban ak(k) -t és bk(k) -t felhasználva előállítjuk g(x) -et, esetünkben az idősort. Elméletileg tehát a mérőműszer zajának spektrumát ismerve - kicsiny (cm-en belüli) hibával terhelten - jó esélyünk van idősorainkat elfogadható pontossággal zajmentesíteni. 4. Numerikus megoldás a Duna budapesti vízállás idősorán A vízmérnöki gyakorlatban fontos állapotváltozók (pl.: vízszintek, vízhozamok, stb.) a mai kor méréstechnikájával gyakorlatilag tetszőlegesen sűrű időközönként megmérhetőek. Fontos - hogy céljaink szerint - méréseink információtartalma, számításigénye gazdaságos (optimális) legyen. Ez azt jelenti - hogy kedvezőtlen esetekben - a túl ritka mérési adatok között kénytelenek vagyunk az interpoláció bizonytalanságait felhasználni, valamint azt, hogy a túl sűrű adathalmazon kénytelenek vagyunk plusz erőforrás bevonással különböző elvű ritkításokat végrehajtani. Munkám további szakaszában élek azzal a feltételezéssel, hogy a mérőrendszerek általánosságban optimálisan üzemelnek. Tehát nem a rendszer felülbírálatára törekszem, hanem a rendszerben található adatsorok: idősorok optimális kihasználására. A vízállás idősorokat vizsgálva a Fourier - transzformációs zajszűrők gyakorlati megvalósításánál a gyors számítás és az adatszerkezet jellege miatt (diszkrét jellgű) a numerikus megoldók közül választottam. A lehetőségeket figyelembe véve a választott numerikus módszerem a gyors Fourier - transzformáció (angol rövidítés: FFT, visszalakítás inverz művelet: IFFT) lett. A módszer kiválasztásánál szempont volt, hogy az Országos Vízügyi Főigazgatóságban (OVF) homogén felbontású idősorok készítésére is van igény egyfajta feldolgozott késztermékként. 9