Hidrológiai Közlöny, 2020 (100. évfolyam)
2020 / 3. szám
54 Hidrológiai Közlöny 2020. 100. évf. 3. sz. Tino G. M. (2009). Precision gravimetry with atomic sensors. Measurement of Science and Technology 20 022001 (16pp). doi: 10.1088/0957-0233/20/2/022001. Doodson A. T. (1921). The harmonic development of the tide generating potential. Proc. Royal Soc. London A 100,306-328. Egbert G. D., Bennett A. F., Foreman M. G. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research 99, (Cl2), 24, 821-852. Egbert G. D„ Ray R. D., Bill, B. G. (2004). Numerical modelling of the global semidiurnal tide in the present day and in the last glacial maximum. Journal of Geophysical Research 109, C03003, doi: 10.1029/2003JC001973. Ekman M. (1993). A concise history of the theories of tide, precession-nutation and polar motion (from antiquity to 1950). Surveys in Geophysics 14, 585-617. Eper-Pápai I., Mentes Gy., Kis M., Koppán A. (2014). Comparison of two extensometric stations in Hungary. Journal of Geodynamics 80, 3-11. Farrell W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics 10 (3), 761-797. https://doi.org/10.1029/RG010i003p00761. Fuentes-Arreazola M. A., Ramirez-Hernández ./, Vázquez-González R. (2018). Hydrogeological Properties Estimation from Groundwater Level Natural Fluctuations Analysis as a Low-Cost Tool for the Mexicali Valley Aquifer. Water 10, 586. doi:10.3390/wl0050586. Goodkind J. M. (1999). The superconducting gravimeter. Review of Scientific Instruments 70 (11), 4131-4152. Grace S. F. (1931). The Semi-diurnal Lunar Tidal Motion of Lake Baikal and the Derivation of the Earth-tides from the Water-tides. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 2 (7), 301-309. https://doi.Org/10.l 111/j. 1365-246X. 1931 .tb05415.x. Green J. A. M. (2010). Ocean tides and resonance. Ocean Dynamics 60, 1243-1253. DOI 10.1007/sl0236- 010-0331-1. Hartmann T., Wenzel H. G. (1995a). The HW95 tidal potential catalogue. Geophys. Res. Lett. 22, 3553-3556. https://doi.org/10.1029/95GL03324. Hartmann T., Wenzel H. G. (1995b). Catalogue HW95 of the tide generating potential. Bull. Inf. Marées Terrestres 123, 9278-9301. Hendershott M. C. (1973). Ocean tides. EOS, Trans. Am. Geophys. Union 54, 76-86. Hendershott M. C. (1977). Numerical models of ocean tides. In: Goldberg E., McCave L, O’Brien J., Steele J., (Eds). The Sea. Wiley-Interscience, New York 6, 47-95. Hendershott M. C. és Speranza A. (1971). Co-oscillating tides in long narrow bays; The Taylor problem revisited. Deep Sea Research 18, 959-980. 7z B. H. (2014). Sub and superharmonics of the lunar nodal tides and the solar radiative forcing in global sea level changes. J. Geod. Sei. 4, 150-165. Jentzsch G. (1997). Earth Tides and Ocean Tidal Loading. In: Wilhelm H., Zürn W., Wenzel H. G. (Eds.) (1997). Tidal Phenomena, Lecture Notes in Earth Sciences 66. Berlin, Heidelberg: Springer, pp. 145-172. Kumpel H.-J. (1997). Tides in Water-Saturated Rocks. In: Wilhelm H., Zürn W„ Wenzel H. G. (Eds.) (1997). Tidal Phenomena, Lecture Notes in Earth Sciences 66. Berlin, Heidelberg: Springer, pp. 277-292. LaCoste L. J. B. (1934). A new type long period vertical seismograph. Physics 5 (7), 178-180. Leblond P. H. és MysakL. A. (1979). Ocean Waves: A Survey of Some Recent Results. SIAM Review 21, (3), 289-328. http://www.jstor.org/stable/2029570. LeblondP. H. és MysakL. A. (1981). Waves in Ocean. Elsevier, p. 602. Lénárt L. (2005). Some aspects of the "3E's" (Economics-Environment-Ethics) model for sustain-able water usage in the transboundary Slovakian and Aggtelek karst region based on some examples from the Bükk Mountains. PhD thesis work, Kassa/Kosice, TUKE. Maréchal J. C., Sarma M. P., Ahmed S., Lachassagne P. (2002). Establishment of earth tides effect on water level fluctuations in an unconftned hard rock aquifer using spectral analysis. Research Communications, Current Science 83 (1), 61-64. Mádlné-Szőnyi J., Czauner B., Simon Sz., Erős A., Zsemle F., Pulay E., Havril T. (2013). Hidrogeológia. Eötvös Loránd Tudományegyetem. pp. 1-179. https://ttk.elte.hu/dstore/document/868/book.pdf. Medvedev I. P. (2018). Tides in the Black Sea: Observations and Numerical Modelling. Pure Appl. Geophys. 175, 1951-1969. https://doi.org/10.1007/s00024-018-1878-x. Melchior P. (1978). The Tides of the Planet Earth. Oxford: Pergamon Press. Mentes Gy. (1981). Horizontal pendulum with capacitive transducer. Acta Geodaetica Geophysica et Montanistica Academiae Scientiarum Hungaricae 16, 269-280. Mentes Gy. (1985). Horizontális inga kapacitív mérőátalakítóval. Kandidátusi értekezés, p. 170. Mentes Gy. (2010). Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary. Review of Scientific Instruments 81 (7), 074501. Mentes Gy. (2018). A dunaszekcsői partfalmozgás okainak vizsgálata. Hidrológiai Közlöny 98 (3), 34-45. Mentes Gy. (2019). A Sopronbánfalvai Geodinamikai obszervatórium története. Geodézia és Kartográfia 6, 4-13. Mentes Gy és Eper-Pápai I. (2009). Relations between microbarograph and strain data. Journal of Geodynamics 48, 110-114. Mentes Gy., Bódis V. B. (2012). Relationships between short periodic slope tilt variations and vital processes of the vegetation. J. Appl. Geodesy 6, 83-88. https://doi.org/! 0.1515/jag-2012-0009.