Hidrológiai Közlöny, 2015 (95. évfolyam)

2015 / 4. szám - Abonyi András - Padisák Judit - Stankovic, Igor - T-Krasznai Enikő - Zámbóné Doma Zsuzsanna - Stenger-Kovács Csilla: Fitoplankton-diverzitás az extrém sekély és abszolút mély tótipológiai esetek között

70 HIDROLÓGIAI KÖZLÖNY 2015. 95. ÉVF. 4. SZ. Irodalom Butchart, S.H.M., Walpole, M, Collen, B., van Strien, A., Scharlemann, J P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, 1, Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.-C., Watson, R., 2010. Global biodiversity: Indicators of recent declines. Science 328, 1164-1168. Corcoran, A.A., Boeing, W.J., 2012. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE 7, e49397. Felföldi, T., Somogyi, B., Máraligeti, K., Vörös, L., 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). Journal of Limnology 68, 385-395. Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35,403-424. Hutchinson, G.E., 1961. The paradox of the plankton. The American Naturalist 95, 137-145. Keller, R.P., Lodge, D M., 2009. Invasive Species, in: Likens, G.E. (Ed.), Encyclopedia of Inland Waters. Elsevier, Oxford, pp. 92-99. Lund, J.W.G., Kipling, C., Cren, E.D., 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143-170. Padisák, J., 2007. Phytoplankton, in: O'Sullivan, P.E., Reynolds, C.S. (Eds.), The Lakes Handbook. Blackwell Science Ltd, Malden, MA, USA, pp. 251-307. Padisák, J., Crossetti, L., Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1-19. Ptacnik, R., Solimini, A.G., Andersen, T., Tamminen, T., Brettum, P., Lepistö, L., Willén, E., Rekolainen, S., 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences 105,5134-5138. Reynolds, C., Dokulil, M.T., Padisák, J., 2000. Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now? Hydrobiologia 424, 147-152. Reynolds, C.S., 2006. The Ecology of Phytoplankton. Cambridge University Press, 535 pp. Reynolds, C.S., Huszar, V., Kruk, C, Naselli-Flores, L, Meló, S., 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24,417-428. Sommer, U., 1983. Algal nutrient competition in continuous culture. Hydrobiological Bulletin 17, 21-27. Sommer, U., 1993. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249, 59-65. Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J.C., Mooij, W.M., van Donk, E., Winder, M., 2012. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43, 429-448. Sommer, U., Gliwicz, Z.M., Lampert, W., Duncan, A., 1986. The PEG-model of seasonal succession of planktonic event in fresh waters. Arch. Hydrobiol. 106,433-471. Tilman, D., Kilham, S.S., Kilham, P., 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13, 349-372. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilunger der internationale Vereinigunk für theoretische und angewandte Limnologie 9, 1-38. Weyhenmeyer, G.A., Peter, H., Willén, E.V.A., 2013. Shifts in phytoplankton species richness and biomass along a latitudinal gradient - consequences for relationships between biodiversity and ecosystem functioning. Freshwater Biology 58, 612-623. Whittaker, R.H., 1974. Climax Concepts and Recognition, in: Knapp, R. (Ed ), Vegetation Dynamics. Springer Netherlands, pp. 137-154 Wilson, J.B., 1990. Mechanisms of species coexistence: twelve explanations for Hutchinson's' paradox of the plankton': evidence from New Zealand plant communities. New Zealand Journal of Ecology 13,17^12. Phytoplankton diversity along lake typology classes from extrem shallowness to absolute deepness András Abonyi', Judit Padisák1, Igor Stankovic2, Enikő T-Krasznai3, Csilla Stenger-Kovács1 'University of Pannónia, Department of Limnology & MTA-PE Limnoecology Research Group, Egyetem u. 10., H-8200 Veszprém, Hungary 2Central Water Management Laboratory, Hrvatske vode, Ulica grada Vukovara 220,10000 Zagreb, Croatia Trans-Tiszaman Authority of Environmental and Natural Protection, Hatvan u. 16., H-4025 Debrecen, Hungary Abstract: Phytoplankton diversity is often scaled along trophic conditions or frequency gradient of physical disturbances, while over a year, these effects determine the seasonal pattern of diversity both directly and indirectly. The water depth/mixing type gradient, however, fundamentally determines a system typology, which governs not only the distribution of nutrient supply, but also the functional complexity, which responds to disturbances. Present aim is to demonstrate that a basic lake system typology fundamentally determines the functional composition of phytoplankton, its diversity, and ecosystem functioning. Keywords: ecosystem functioning, functional diversity, phytoplankton composition.

Next

/
Thumbnails
Contents