Hidrológiai Közlöny, 2013 (93. évfolyam)
2013 / 5-6. különszám - LIV. Hidrobiológus Napok előadásai
66 HIDROLÓGIAI KÖZLÖNY 2013. 93. ÉVF.5-6. SZ. Mari, C., & J. Collar, 2000. Pink Africa. The Harvill Press, London Odada, E. O., J. Raini & R. Ndetei, 2004. Lake Nakuru: experiences and lessons learned brief. ILEC 2005. Managing lakes and their basins for sustainable use. A report for lake basin managers and stakeholders. International Lake Environment Committee Foundation, Kusatsu, Japan. Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687-701. Roesler, C. S., C. W. Culbertson, S. M. Etheridge, R. Goericke, R. P. Kiene, L. G. Miller & R. S. Oremland, 2002. Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnology and Oceanography 47: 440-452. Schmetterer, G., 1994. Cyanobacterial respiration. In: Bryant D. A. (ed.) The Molecular Biology of Cyanobacteria: 409—435. Kluwer Academic Publishers, Dordrecht, The Netherlands Torzillo G. & A. Vonshak, 1994. Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass and Bioenergy 6: 399-403. Trabelsi, L., H. B. Ouada, H. Bacha & M. Ghoul, 2009. Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. Journal of Applied Phycology 21: 405-412. Üveges, V., K. Tapolczai, L. Krienitz & J. Padisák, 2012. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 668: 263-272 Üveges, V., L. Vörös, J. Padisák & A. W. Kovács, 2011. Primary production of episammic algal communities in Lake Balaton (Hungary). Hydrobiologia 660: 17-27. Vonshak, A., 1997. Spirulina: growth, physiology and biochemistry. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira), 43-65. Taylor & Francis, London Webb, W. L., M. Newton & D. Starr, 1974. Carbon dioxide exchange of Alnus rubra. A mathematical model. Oecologia 17: 281-291. Wetzel, R. G., & Likens, G. E., 2000.. Limnological analyses. New York: Springer-Verlag. Photosynthetic characteristics of Arthrospira fusiformis and Picocystis salinarum at different light intensities and temperatures Abstract: The filamentous blue-green algae Arthrospira fusiformis was replaced by a green picoalga Picocystis salinarum in some saline lakes of East Africa indicating competition between these species. Photosynthetic activity of cultures of A. fusiformis and P. salinarum from tropical lakes were studied under laboratory conditions. The measurements carried out at 7 different temperature (15- 45 °C) and in 9 different irradiance levels in the range of 0-1200 pmol m'2 s'1. The optimum of the photosynthesis of both species was found in the temperature range of 30-40 °C, but a remarkable difference was found between the photoadaptation parameters of the species. P. salinarum has a very low photoadaptation parameter which indicates good shade-tolerance. According to these results neither the temperature nor the irradiance (not the interaction of them) can explain replacement of A, fusiformis by P. salinarum, so it is important to take other environmental parameters into consideration (e.g. salt concentration). Keywords: Arthrospira fusiformis, Picocystis salinarum, photosynthetic characteristics, temperature, irradiance m Klossy Irén alkotása