Hidrológiai Közlöny 2009 (89. évfolyam)

6. szám - L. Hidrológiai Napok: "A hazai hidrobiológia ötven éve" Tihany, 2008. október 1-3.

125 M-Hamvas M., Jámbrik K, Máthé Cs., Vasas G., Bácsi I., Beyer D., és Borbély Gy. (2007) A mikrocisztin-LR (cianotoxin) hatásai külön­böző vízinövényfajokra. A IV. Kárpát-medencei Környezettudo­mányi Konferencia kiadványa. Mitrovic S.M., Allis, 0., Furey, A., James, K.J. (2005) Bioaccumulati­on and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chla­dophora fracta. Ecotoxicology and Environmental Safety. 61: 345­Padisák J (1997) Cylindrospermopsis raciborkii (Woloszynska) Seena­yya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hidrobiol. /Suppl. 4:563-593. Pflugmacher S. (2004) Promotion of oxidative stress in aquatic macro­phyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology. 70: 169­Preussel K Stuken A., Wiedner C., Chorus I. and Fastner J. (2006) First report on cylindrospermopsin producing Aphanizomenon flos -aquae (Cyanobacteria) isolated from two Germán lakes. Toxicon 47(2): 156-162. Reisner M., Carmeli S., Werman M., Sukenik A. (2004) The cyanobac­terial toxin cylindrospermopsin inhibits pyrimidine nucleotide syi­nthesis and alters cholesterol distribution in mice. Toxicological Sciences 82: 620-627. Shaw G. R., Sukenik A., Livne A., Chiswell R. K, Smith M. J., Sea­wright A. A., Norris R., L., Eaglesham, G. K, Moore, M. R. (1999) Blooms of the hepatotoxic cyanobacterium, Aphanizome­non ovalisporum (Forti) in newly constructed lakes, Queensland, Australia. Environ. Toxicol. 14: 167-177. Schembri M.A., Neilan B.A. and Saint C.P.(2001) Identification of ge­nes implicated in toxin production int he cyanobacterium Cylind­rospermopsis raciborskii. Environ Toxicol 16 (5): 413-421. Schlereth A., Becker C., Horstmann C., Tiedemann J., Müntz K. (2000) Comparison of globulin mobilization and cysteine proteina­ses in embryogenic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). Journal of Experimentál Botany 51 (349): 1423-1433. Tumer P.C., Gammie A.J., Hollinrake K, Codd G.A. (1990) Pneumo­nia associated with contract with cyanobacteria. brit. Med. J. 300, 1165-1175. Vasas G., Gásprár A., Surányi G., Batta G., Gyémiánt Gy., M. Hamvas M„ Máthé Cs., Grigorszky I., Molnár E„ Borbély G. (2002) Capil­lary Elecfiophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum by plánt test (Blue-Green Sinapis Test). Analytical Biochemistry 302: 95­Vasas G., Gáspár A., Páger C., Surányi G., Máthé C., M-Hamvas M., Borbély G. (2004) Analysis of cyanobacterials toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 25: 108-115. White S.H., Duivenvoorden L.J., Fabbro L.D., Eaglesham G.K (2007) Mortality and toxin bioaccumulation in Bufo marinus following exposure to Cylindrospermopsis raciborskii cell extracts and live cultures. Environmental Pollution 177: 158-167. Wilson C. M. (1975) Plánt nucleases. Annu. Rev. Plánt Physiol. 26: 187-208. Investigation of sensitivity of aquatic plants to the cylindrospermopsin K. Jámbrik, M. M-Hamvas, Cs. Máthé, D. Beyer, I. Bácsi, G. Koncz, Sz. Tóth, Gy. Surányi and Gy. Borbély University of Debrecen, Department of Botany, H-4010, Debrecen, Egyetem tér 1. Abstract: Cyanobacteria can produce a wide rangé of bioactive and toxic substances which can be harmful to wildlife and humans. One of these toxins is cylindrospermopsin (CYN), a cyanobacterial guanidine alkaloid hepatotoxin and protein synthesis-inhibi­tor. The aim of this study was to compare the effects of CYN containing cell free extracts of Aphanizomenon ovalisporum (BGSD-423) culture on three aquatic plánt species. In our study during exposure of Ceratophyllum to CYN in a concentrati­on of 2,5; 5 pg ml' 1 an elevation of protease and ssDNase enzyme activity was detected after 19 days on the activity gels. Le­mna minor was sensitive to CYN as well. The growth parameters and chlorophyll content were significantly reduced by 10, 20 |ig ml" 1 CYN. Enzyme activity gels (ssDNase and protease) showed significant increase of enzyme activities under the in­fluence of CYN. 20 pg ml" 1 CYN concentration induced appearance of new protease izoenzymes (32, 35, 38, 58 kDa). Wolff­ia arrhiza plants were the most sensitive to CYN. Growth (as weight and frond number) and chlorophyll content were signi­ficantly reduced after 5 days of exposure to concentrations of 5-20 pg ml" 1. The level of ssDNase activity would be higher and the isoenzyme patterns of protease enzymes showed characteristic changes in CYN treated plants compared to contol on­es. Several protease-isoenzymes (43, 55, 60, 70 kDa) were induced in the CYN treated plants. Keywords: Aphanizomenon ovalisporum, cylindrospermopsin, Wolffia, Lemna, Ceratophyllum. (Klossy Irén alkotása)

Next

/
Thumbnails
Contents