Hidrológiai Közlöny 2007 (87. évfolyam)
6. szám - XLVIII. Hidrobiológus Napok: Európai elvárások és a hazai hidrobiológia Tihany, 2006. október 4–6.
16 HIDROLÓGIAI KÖZLÖNY 2007. 87. ÉVF. 6. SZ. GULYÁS P., FORRÓ L. 2001: Az evezölábú rákok kishatározója 2. bővített kiadás, Környezetgazdálkodási Intézet. HERZIG, A., 1979: The Zooplankton of the open lake. In: Löffler, H (ed.): Neusiedlersee: the limnology of a shallow lake in Central Europe, Dr. W. Junk Publ., The Hague, Boston - London: 281 - 355. INCZE, L. S„ D.HEBERT, N. WOLFF, N. OAKEY and D. DYE, 2001: Changes in copeod distributions associated with increased turbulence from wind stress, Mar. Ecol. Prog. Ser., 213, 229-240. JUNGWIRTH M., 1973: Populationsdynamik und Produktionsrate von Branchinecta orientális, Diss., Univ. Wien: 1-174. LAGADEUC, Y., M. BOULÉ and JJ. DODSON, 1997: Effect of vertical mixing on the vertical distribution of copepods in coastal waters, J. Plankton Res., 19(9), 1183-1204. MACKAS, D. L„ H. SEFTON, C. B. MILLER and A. RAICH, 1993: Vertical habitat partitioning by large Calanoid copepods in the oceanic Sub-Arctic pacific during spring, Prog. In Oceanog., 32 (1-4), 259-294. MARGALEF, R., 1978: Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta 1: 493-509. MARRASÉ, C., J. H. COSTELLO, T. GRANATA and J. R. STRICKLER, 1990: Granzig in a turbulent environment: Energy dissipation, encounter rate, and efficiancy of feeding currents in Centropages hamatus. Proc. Natl. Acad. Sei. 87: 1653 - 1657. MOISANDER, P. H., J. L. HENCH, K. KONONEN and H. W. PAERL, 2002: Small-scale shear effects on heterocystous cyanobacteria, Limnol. Oceanogr. 47: 108 - 119. NEWRKLA P., 1974: Populationsdynamik, Produktion und Respiration von Arctodiaptomus spinosus in einem alkalinen Kleingewässer, Diss., Univ. Wien: 1-86. O'BRIEN, K., 2002: The effect of turbulent mixing on vertical distribution and biomass of phytoplankton populations, PhD. Thesis, Centre for Water Research, University of Western Australia, Crawley, 6009 Australia. REYNOLDS, C. S., 1998: Plants in motion: Physical-biological interaction in the plankton. In: J. Imberger (ed.) Physical Processes in Lakes and Oceans, American Geographical Union Washington, USA.: 535-560. SEBESTYÉN, O. 1960: Horizontális planktonvizsgálatok a Balatonon, Annal. Biol. Tihany, 27: 115-130. SOMLYÓDY, L. 1986: Wind induced sediment resuspension in shallow lakes. - Internat. Conf. On water quality modeling int he inland natural environment. - Bournemouth, England: 10 -13. June 1986. BHRA, The Fluid Engineering Centre, Cranfield, Bedford MK430 j, England: 287-298. 1. táblázat: A szél- és a vízáramlás sebesség kapcsolatának korreláció analízise Correlations ATL VELO VELO F VELO A PIL SZEL SZEL 1 SZEL 2 SZEL 3 SZEL 6 SZEL 24 ATL SZEL ATL VELO Pearson Correlation 1 ,942" .710" ,481" .462" .458" ,562" .351' -.108 ,503" Sig. (2-tailed) .000 ,000 ,004 .004 ,004 ,000 .033 ,524 ,001 N 37 37 28 34 37 37 37 37 37 37 VELO F Pearson Correlation ,942" 1 .480" ,420* ,370* .377* ,465" ,275 -,070 .411* Sig. (2-tailed) .000 ,010 ,013 .024 ,021 ,004 .100 ,681 ,011 N 37 37 28 34 37 37 37 37 37 37 VELO A Pearson Correlation .710" ,480" 1 ,287 ,326 ,236 .211 .309 -.019 .265 Sig. (2-tailed) .000 ,010 .154 .091 .227 .281 .110 ,924 .174 N 28 28 28 26 28 28 28 28 28 28 PIL SZEL Pearson Correlation .481" ,420* ,287 1 .924" .889" .863" ,739" ,333 .909" Sig. (2-tailed) .004 ,013 .154 .000 .000 .000 ,000 ,054 ,000 N 34 34 26 34 34 34 34 34 34 34 SZEL 1 Pearson Correlation .462" ,370* .326 ,924" 1 ,962" .912" ,800" ,367* .978" Sig. (2-tailed) .004 ,024 .091 ,000 ,000 ,000 ,000 ,025 .000 N 37 37 28 34 37 37 37 37 37 37 SZEL 2 Pearson Correlation .458" ,377* .236 .889" ,962" 1 .948" ,804" ,333* .990" Sig. (2-tailed) ,004 ,021 ,227 ,000 ,000 ,000 ,000 ,044 .000 N 37 37 28 34 37 37 37 37 37 37 SZEL 3 Pearson Correlation .562" ,465" .211 ,863" ,912" ,948" 1 .826" ,269 .972" Sig. (2-tailed) ,000 ,004 .281 ,000 .000 ,000 .000 .108 .000 N 37 37 28 34 37 37 37 37 37 37 SZEL 6 Pearson Correlation .351* ,275 ,309 ,739" .800" ,804" ,826" 1 ,307 ,826" Sig. (2-tailed) ,033 ,100 ,110 ,000 .000 ,000 ,000 ,065 ,000 N 37 37 28 34 37 37 37 37 37 37 SZEL 24 Pearson Correlation -,108 -.070 -.019 ,333 ,367* ,333* ,269 .307 1 ,330* Sig. (2-tailed) ,524 ,681 .924 ,054 ,025 ,044 ,108 ,065 .046 N 37 37 28 34 37 37 37 37 37 37 ATL SZEL Pearson Correlation .503" ,411* ,265 ,909" ,978" ,990" ,972" .826" ,330* 1 Sig. (2-tailed) ,001 .011 ,174 ,000 ,000 ,000 ,000 .000 ,046 N 37 37 28 34 37 37 37 37 37 37 Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). Influence of the turbulence of the shalow of Lake Balaton on the vertical distribution of the pelagic Zooplankton E. Baranyai and L. G.-Tóth Abstract: Turbulence of the open water of Lake Balaton (area: 596 km 2, mean depth: 3,2 m) were measured parallel with the study of the vertical structure of the Zooplankton. The turbulence waried between 0095 and 0,1881 m s' 1. The momentary turbulence value was mostly determined by the hourly mean wind velocity measured 3 hours before the velocimetry of the water. Influence of the turbulentce on the vertical distribution of the Zooplankton became signifficant abowe 2 - 3.5 cm sec"'. Keywords: Balaton, developement stages, turbulence, Zooplankton