Hidrológiai Közlöny 2007 (87. évfolyam)
4. szám - Kovács Tünde–Ács András–Kováts Nóra–Paulovits Gábor: Daphnia pulex táplálkozási aktivitásának gátlása cianobakteriális toxiditás hatására
28 HIDROLÓGIAI KÖZLÖNY 2007. 87. ÉVF. 4. SZ. Irodalom Bartoszewicz, M., Mazur-Marzec, H., Michalska, M., Kobos, J. (2006). Ecotoxicological Testing in Studies on Toxicity of Cyanobacterial Blooms. International Conference on Ecotoxicology - Trends and Perspectives, 17-20 Sept. 2006, Wisla, Poland Book of Abstracts Carmichael, W.W. (1992a). A status report on planktonic cyanobacteria (Blue-green algae) and their toxins. EPA/60/R-92-079, Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH. 141. pp. Carmichael, W.W. (1992b). Cyanobacteria secondary metabolites - the cyanotoxins. J.Appl. Bacteriol., 72: 445-459. Chorus, I., Bartman, J. (1999). Toxic Cyanobacteria in Water. E&F Spon, New York Commission of the European Communities (2001) White Paper. Brussels Entz, G., Sebestyén, O. (1942). A Balaton élete. A Királyi Magyar Természettudományi Társulat. Vol. 124. Henning, M„ Hertel, H„ Wall, H„ Kohl, J.-G. (1991). Strain-specific influence of Microcystis aeruginosa on food ingestion and assimilation of some cladocerans and copepods. Int. Rev. Gesamten Hydrobiol. 76:37-45. Jungmann, D. (1992). Toxic compounds isolated from PCC7806 that are more active to Daphnia than two microcystins. Limnol. Oceanogr. 37: 1777-1793. Jungmann, D. (1995). Isolation, purification, and characterization of a new Daphnia-toxic compound from axenic Microcystis flos-aquae strain PCC7806. J. Chem. Ecol. 21: 1665-1676. Kfir, R„ Johanssen, E., Botes, D.P. (1986). Monoclonal antibodies specific for cyanoginosin-LA: Preparation and characterisation. Toxicon, 24: 543-552. Kováts, N., Szalay, T., Pollution survillance and control in waterland; Eurolab course; 22-28. October University of Veszprém Lotocka, M. (2001). Toxic effect of cyanobacterial blooms ont he grazing activity of Daphnia magna Straus. Oceanalogia, 43(4), pp. 441453. Marsalek, B., Blaha, L. (2004). Comparison of 17 Biotests for Detection of Cyanobacterial Toxicity. Environmental Toxicology 19 (4) p. 310-317 Moreno, I.M., Pereira, P., Franca, S., Cameán, A. (2004). Toxic cyanobacteria strains isolated from blooms in the Guadiana River (southwestern Spain). Biol. Res. 37: 405-417. Oudra, B„ Loudiki, M., Sbiyyaa, B., Martins, R., Vasconselos, V., Namikoshi, N. (2001). Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lallac Takerkoust Lake-Reservoir (Morocco). Toxicon 39: 1375-1381. Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K.A., Krause, E., Codd, G.A., Steinberg, C.E.W. (1998). Identification o fan enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification. Biochim. Biophys. Acta 1425: 527-533. Reskóné, M. N., Törökné, K. A. Toxic Microcystis aeruginosa in Lake Velencei. (2000). Environ Toxicol 15: 554-557 Rohrlack, T„ Dittman, E„ Börner, T., Christoffersen, K. (2001). Effects of Cell-Bound Microcystins on Survival and Feeding of Daphnia spp. Applied and Environmental Microbiology, Vol. 67, No. 8, p.3523-3529. Rohrlack, T., Christoffersen, K, Kaebernick, M., Neilan, B.A. (2004). Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria. Applied and Environmental Microbiology, Vol. 70, No. 8, p. 5047-5050. Schoenberg, S.A., Carlson, R.E. (19844). Direct and indirect effects of Zooplankton grazing on phytoplankton in a hypertrophic lake. Oikos 42:291-302. Shirai, M., Ohtake, A., Sano, T., Matsumoto, S., Sakamoto, T., Sato, A., Aida, T., Harada, K., Shimada, T., Suzuki, M., Nakano, M. (1991). Toxicity and toxins of natural blooms and isolated strains of Microcystis spp. (Cyanobacteria) and improved procedure for purification of cultures. Applied and Environmental Microbiol. 57: 1241-1245. Tarczynska, M., Nalecz-Jawecki, G., Brzychcy, M., Zalewski, M., Sawicki, J. (2000). The Toxicity of Cyanobacterial Blooms as determined by Microbiotests and Mouse Assays. In : New Microbiotests for Routine Toxicity Screening and Biomonitoring (G. Persoone, C. Janssen and W. De Coen, eds. - Kluwer Academic / Plenum Publishers) , Chapter 59 527-532 Törökné, A.K. (1999). A new Culture-Free Microbiotest for Routine Detection of Cyanobacterial Toxins. Environmental Toxicology 14 (5), p. 466-472 World Health Organization (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Chorus, I. and Bartram, J. (eds). E & FN Spon, London, UK A kézirat beérkezett: 2007. március 7-én. KOVÁCS TÜNDE 2005-ben végzett a Veszprémi Egyetem Mérnöki Karán, mint környezetmérnök. Jelenleg a Pannon Egyetemen (előző nevén Veszprémi Egyetem) folytatja PhD tanulmányait. ÁCS ANDRÁS a Pannon Egyetem végzős környezetmérnök hallgatója. KOVÁTS NÓRA dr., oki. biológus, a Pannon Egyetem Környezetmérnöki és Kémiai Technológia Tanszékének docense. Kutatási területe környezet-toxikológia, elsősorban alternatív ökotoxikológiai tesztek alkalmazhatóságának vizsgálata. PAULOVITS GÁBOR dr., oki. biológus, az MTA Balatoni Limnológiai Kutatóintézetének tudományos főmunkatársa. Szakterülete természetes vizek ökológiája. Inhibition of feeding activity in Daphnia pulex by cyanobacterial toxicity Tünde Kovács 1 - András Ács 1 - Nóra Kováts 1 - Gábor Paulovits 2 'University of Pannónia, Dept. of Environmental Engineering and Chemical Technology, 8200. Veszprém P.O.Box 158, e-mail: toxlab@almos.vein.hu 2Balaton Limnological Research Institute of the Hungarian Academy of Sciences, 8237. Tihany, Klebeisberg Kunó str. 3, e-mail: paulo(a>tres.blki.hu Abstract: Appearance of cyanobacterial blooms depends on favourable temperature and nutrient content of the water. Scums which cause coloured and opaque water have become more frequent with the eutrophication of surface waters. In order to assess cyanobacterial toxicity non-conventional ecotoxtests have been used which represent different elements of the recipient and impacted ecosystems, and may substitute traditional mortality tests. The proposed bioassay which is based on inhibition of feeding activity in Daphnia pulex might be appropriate to act as a rapid Daphnia test as its exposure is shorter than that of the standard mortality test and its sensitivity range is similar (EC 5 0s were in the same magnitude in comparison to Thamnocephalus platyurus and Daphnia pulex mortality tests). Its further benefit is that it uses a sublethal endpoint. In order to assess its general sensitivity, additional (not necessarily cyanobacterial) samples should be tested. Keywords: Microcystis, Daphnia pulex, feeding activity, non-conventional bioassays