Hidrológiai Közlöny 1998 (78. évfolyam)
4. szám - Fülöp István Antal–Józsa János: A neruális hálózatok világa
275 Micherdzinski, IV. 1958 O r Verbrauch einiger Silsswasser-Amphipoden. Fólia Biologica 6: 145-162. Moon HP. 1970. Corophium curvispinum (Amphipoda) recordcd again in the British Isles. Nature, [.ondón 226, 976. Moon, H. P. 1934. A quantitative survey of the Balaton mud fauna. Magy. Biol. Kut. Munk. 7: 170-189. Moore. P. G. 1981. The life histories ofthe amphipods Lembos websleri Bate and Corophium bonnellii Milne Edwards in kclp holdfasts J. exp. mar. Biol. Fxol. 49:1-50. Mordukhai-Boltovskoi, F. D. 1960. Caspian fauna in the basin of the Azov and Black scas Izdatclstvo AN SSSR, Moskva, Leningrád, 1286. (In Russian) Muskó, /. R. 1994. Occurrence of Amphipoda in Hungary since 1853. Crustaceana 66:144-152 Muskó, I.B., L. G.-Tóth and E. Szabó 1995. Respiration and respiratorv electron transport system (ETS) activity of two amphipods: Corophium curvispinum G. O. Sars and Gammarus fossarum Koch Pol. Arch. Hydrobiol. 42, 547-558. Muskó, 1. B. 1989. Amphipoda (Crustacea) in the littoral zone of Laké Balaton (Hungary). Qualitativc and quantitative studies. Int Rev gcs. Hydrobiol. 74: 195-205. Muskó, /. B. 1990. Qualitative and quantitative relationships of Amphipoda (Crustacea) living on macrophytes in Laké Balaton. Hydrobiologia 191: 269-274 Muskó, I. B. 1992 a Amphipoda species found in Laké Balaton since 1897. Miscnea zool. Hung. 7: 59-64. Muskó, 1. B. 1992 b. A Corophium curvispinum G. O. Sars (Crustacea: Amphipoda) életciklusa a balatoni hinárosban (Life history of Corophium curvispinum G. O. Sars (Crustacea: Amphipoda) living on macrophytes in Laké Balaton). Hidrológiai Közlöny 72: 300-304. Muskó, I. B. 1992 c. Life history of Corophium curvispinum G. O. Sars (Crustacea: Amphipoda) living on macrophytes in Laké Balaton. Hydrobiologia 243/244:197-202. Muskó, I.B., L. G.-Tóth and E. Szabó 1995. Respiration and respiratory electron transport system (ETS) activity of two amphipods: Corophium curvispinum G. O. Sars and Gammarus fossarum Koch. Poi. Arch Hydrobiol. 42, 547-558. Muskó, I. B. and R. R. Harris. Oxygen consumption, environmental hypoxia and tube-dwelling in Corophium curvispinum (Crustacea, Amphipoda), Manuscript. Muus, B. 1967. The fauna of Danish estuaries and lagoons. Distribution ecology ofthe mesohaline zone. Medd. Danm Fisk. Havundersog., N. Ser 5: 1-316. Reyes, R. C„ U. Waller and H. Rosenthal 1990. Respiration in Macrobrachium rosenbergi postlarvae at normoxic and hypoxic levels. J. Aqua. Trop 7: 117-124 Schellenberg, A. 1942. Flohkrebse oder Amphipoda. In: Dahl, F. Die Tierwelt Deutschlands, 40. Teil, Krebstiere oder Crustacea IV, Jena, pp. 252. Sebestyén, O. 1934. A vándorkagyló (Dreissensia polymorpha Pali.) és a szovöbolharák (Corophium curvispinum G. O. Sars forma devium Wundsch) megjelenése és rohamos elterjedése a Balatonban. Magy. Biol. Kut. Munk. 7: 190-204. Shillaker, R. O. and P. G. Moore 1987. The biologv of brooding in the amphipods Lembos websteri and Corophium bonnellii Milne Edwards. J. exp. mar. Biol. Ecol. 110: 113-132. Standard methods for the examintation of water and wastewater 1962. American Publ. Health Assoc. Inc New York. Sutcliffe, D. IV. 1984. Quantitarive aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review. - Freshwater Biology 14: 443-489. IVouters, K. A. 1985. Corophium curvispinum Sars, 1895 (Amphipoda) in the river Meuse, Belgium. Yankovskaya, A. I. 1941. Izucheme intensivnosti dykhamya nekotorykh volzhkikh amfipod. Ref. robot. ukhr. otd. biol. nauk AN SSSR za 1940 g., 206. Zeuthen, E. 1955. Comparative physiology (respiration). Ann. Rev. Physiol. 17: 459-482. The respiration of Corophium curvispinum (Crustacea: Amphipoda) under various circumstances Ilona B. Muskó'and R R Harris 2 1 Balaton Limnological Research Institute ofthe Hungárián Academy of Sciences, H-8237 Tihany, Hungary 2 Department ofZoology, University of Leicester, University Road, Leicester LEI 7RH, U.K. Abstract. Oxygen consumption of Corophium curvispinum, the dominant amphipod species in Laké Balaton was studied with the Winkler method at various temperatures. Specific oxygen consumption (= metabolic rate MR) increased exponentially with the temperature: MR = exp(0 069T- 1.528), r = 0 827, where MR = metabolic rate or specific oxygen consumption (jig 0 2 mg ' wet weight h'), T= temperature in °C. The oxygen consumption of C. curvispinum was studied with an open flow respirometer in different oxygen concentrations produced using a gas mixing column through which O2 and N2 gas was bubbled at controlled rates. Free moving amphipod oxygen consumption was measured alsó ater they had been allowed to settle within small polythene tubes. Animals settling in tubes consume significantly (p < 0.001, ANOVA) more oxygen than those moving free in the respiration chamber The oxygen consumption of the animals can be deseribed with the following equation: y' — 242 86 ln(x) - 77 23, r 2 = 0 68 where y 1 = oxygen consumption (|J O2 g' 1 h' 1) of animals moving freely in the respiration chamber, x = oxygen concentration (mgT 1); y 2= 309 ln(x) + 181.51, r 2 = 0.82, where y 2= oxygen consumption of the animals settling in tűbe in the respiration chamber, x = oxygen concentration (mgl"'). The number of animals leaving their tubes was recorded. Approximately 20 % of the amphipods leaved the tubes when oxygen concentrations were below 3 mgl' 1. Key words: respiration, Corophium curvispinum, temperature, hypoxia, tube-dwelling.