Hidrológiai Közlöny 1990 (70. évfolyam)
4. szám - Szigyártó Zoltán: A Saint Venant-egyenlet levezetése a Narier–Stokes egyenletből hidraulika stochasztikus módszereivel
SZIGYARTÓ Z.: A Saint Vénant egyenlet 229 így például az a* helyett az egyéb levezetések során bevezetett « (a Coriolis tényező) figyelmen kívül hagyja a turbulens viszonyokra jellemző, s a (17) összefüggéssel definiált D t 2 tagot. Ez pedig elméletileg azért kifogásolható, mivel a turbulens vízmozgást a lamináris vízmozgásra érvényes értékkel jellemzik. Fel kell hívni a figyelmet arra is, hogy az a* értéke ez alkalommal a differenciálás jele mögött maradt . Ez pedig helyes is, hiszen mind a sebességeloszlás, mind pedig a turbulenciaviszonyok szelvényről szelvényre változhatnak. Rámutat továbbá ez a levezetés arra is, hogy — az általánosan tekinthető szokástól eltérően —nincs semmi indok sem arra, hogy a Saint V.énant egyenlet első tagját bármiféle (a) arányosító tényezővel beszorozzuk. Jellemzője továbbá ennek a levezetésnek az is, hogy egyértelműen bemutatja: a (25) összefüggés szabatosan csupán prizmatikus, s így egyenes mederszakaszra lehet érvényes. Végül elméleti szempontból van jelentősége annak, hogy ezzel a levezetéssel (a (15) és (24) összefüggés alapján) már szabatosan értelmezni lehet a Ghézy-féle C tényező hidrodinamikai jelentését is. Irodalom 1. Budó Á.: Mechanika, Tankönyvkiadó, Budapest, 1905 2. Kozák M.: A szabadfelszínű, nempermanens vízmozgások számítása digitális számítógépek felhasználásával. Akadémiai Kiadó, Budapest, 1977. 3. Le Méhauté, B.: An Introduction to Hydrodinamics and Water Waves. Springer-Verlag, New York. Heidelberg, Berlin, 1976. A kézirat beérkezett: 1988. május 9. Az átdolgozás beérkezett: 1989. december 18. Közlésre elfogadva: 1989. december 20. Abstract: Key words: Derivation of de Saint Venant's equation from the Navier-Stokes equations by the inethods of stochasic hydraulics Szigyártó, Z. An approach involving stochastic hydraulics has been adopted to derive, starting from the Navier-Stokes equation, the basic formula of practical analysis of unsteady flow, tlie de Saint Venant equation. The Navier-Stokes equation is written as the outset into the form (1) readily applicable alsó in curvilinear coordinates. Introducing the volume weiglit defined by Eq. (2) and assuming that of the external forees gravity acts exclusively on water, the derivation proceeds through Eqs. (4) to (7), furthor Eq. (8) expressing the elevation of the water surfaee to the function form of Eq. (9). The cross section is tlien defined as an oriented surface and eonsiderations are confined to a prismatic, straight channel section. Using the averages expressed by Eqs. (10) to (15), each term involved in Eq. (9) is found readily for the entire cross sectional area (and for average conditions as regards turbulense), liecombining tliese with Eq. (9) the expression (18) is obtained, which together with Eqs. (19) and (24) yields the de Saint-Venant equation. Supplementary remarks are attached to the applicatíon of the empirical relationship of Eq. (24), further to the type and applications of the correction factors to be íntrodueed when changing over from point values representing particularünstants to average conditions as regards turbulence and to area averages over the cross section. It is emphasized finally that Eq. (25) applies in the exact sense to stright-prismatic cliannel sections alone and that the derivations offers the opportunity of giving an exact interpretation alsó to C'hézy's coefficient C. Hydraulics, turbulent flow, theory, derivation, averaging SZIGYARTÓ ZOLTÁN Budapesten született, 1926-ban. Okleveles általános mérnök (1950), a műszaki tudomány doktora (1982), a Budapesti Műszaki Egyetem címzetes egyetemi tanára (1986). Az egyetem elvégzése után tanársegédként tanított a Műegyetemen, majd három óvig a hidrológia szakon önálló aspiráns volt. Ezután, 1955-ben az akkori Vízgazdálkodási Tudományos Kutató Intézetben helyezkedett el, s ott, illetve annak jogutódjánál, a Vízgazdálkodási Tudományos Kutatóközpontban volt alkalmazásban egészen az 1986. évi nyugdíjazásáig. Ettől kezdve, mint nyugdíjas tudományos tanácsadó dolgozik ugyanezen a helyen. Kutatási területe a hidrológiára (a csapadékjárás vizsgálatára és a vízfolyások hidrológiájára), a hidraulikára (a nyíltfelszínű vízmozgások vizsgálatára) ós a mezőgazdasági vízgazdálkodásra (az öntözőcsatorna-rends/.erek tervezésének és üzemének, továbbá a belvízrendszereknek a fejlesztésére) terjed ki. E témakörökben jelent meg több mint 150 publikációja is. Hosszabb ideje folyamatosan foglalkozik a vízrajz operatív feladatainak a megoldásával. Tudományos munkásságának társadalmi elismerését jelzi a Vásárhelyi Pál-díj, a Bogdánfy Ödön emlékérem, a Pech József- és a Vásárhelyi Pál-emléklap elnyerése. A Magyar Hidrológiai Társaság Mezőgazdasági Vízgazdálkodási Szakosztályának elnöke, a CIGR Magyar Nemzeti Bizottságának alelnöke.