Hidrológiai Közlöny 1987 (67. évfolyam)
1. szám - Emir Zelenhasic–Attila Salvai–Bojan Srdjevic: A Tisza kisvízi eseményeinek sztochasztikus elemzése
jg HIDROLÓGIAI KÖZLÖNY 1987. 67. ÉVFOLYAM, 1. SZAM Stochastic strainflow drought analysis of the Tisza river E. Zelenhasic, A. Salvai and B. Srdejevic Abstract: As an important basic information of decision making, water resources management badly needs the analysis and statistical characterization of streainflow droughts. So far, the satisfactory research results on the stochastic analysis of streamflow droughts (e. g. Kille 1970, Lauterbach, 1976) have not been very extensive, at least not for practical application by consulting engineers. The present paper tries to contribute to overcome this deficiency. In Chapter 2, exact definitions for the streamflow drought event referring to a given reference discharge Q r as well as for its characteristic parameters: time of occurrence, duration and deficit are given (Fig. 1.) For a given time interval [0, t], the following characteristics of streamflow droughts are considered: the number of streamflow droughts in [0, t], k, the largest deficit Dmax, the largest streamflow drought duration T max (all of them depending on t) as well as the time of occurence of the i>-th streamflow drought, r y, that of the largest deficit, z (Dmax) and of the strealmflow drought of largest duration r (Tmax)- In Chapter 3, mostly based on previous literature (Todorovió and Zelenhasic 1970; Zelenhasic, 1970 and 1979), mathematical models for the theoretical distribution of k, Dm ax and Tmax are outlined. In Chapter 4, a practical application of the foregoing is given for the Tisza liiver, using the streamflow record from 193] through 1982 of the Senta gauging station, Yugoslavia (catchment area: 141 715 kin 2, mean discharge: "g=801 m 3-s _ 1, selected reference discharge: Q r = Q 9 0%=220 m 3-s — *). 71 streamflow drought events were identified. After checking their independency (Fig. 2) and determining the relationship between the average number of drought events occurring in [0, i] and the time t (Eq. 25, Fig. 3), the empirical and fitting probabiltiy distribution and/or density functions of the parameters k, D, Dmax, T, Tmax, r 2 and r(Dmax) were determined (Table 1, Figs, i and 5). Finally, in Subchapter 4, 3, the statistical concomitance of streamflow drought deficits and durations is investigated for the Senta station (Table 2) and an important numerical application of the Zelenhasic, method for generating synthetic streamflow droughts of given return periods, is shown (Fig. 6). Keywords: streamflow drought, distribution function, rank number correlation, generation of synthetic data, Tisza River 1938-ban született. 1962-ben végzett a Belgrádi Egyetem Mérnöki Fakultásán. 1968-ban M. Sc. fokozatot, 1970-ben Ph. D. fokozatot szerzett a Coloradoi Állami Egyetemen (USA). Többek között dolgozott a Energoprojectnek, a Harza Engineering Company-nál, Pakisztánban és a Szerbiai Hidrometeorológiai Intézetben. 1979 óta a hidrológia professzora az Újvidéki Egyetem Mezőgazdasági Fakultásán. Nevéhez fűződik az árvizek, nagycsapadékok és aszályok matematikai statisztikai modelljének kidolgozása. Két könyve és seregnyi tanulmánya jelent meg. Tagja a Water Resources Management szerkesztő bizottságának. EMIR ZELENHASIC Az Üjvidéki Egyetem Mezőgazdasági Karán végzett. 1985 óta a Kar Vízgazdálkodási Intézetében dolgozik. Fő kutatási területe a kisvizek és aszály hidrológiájához kapcsolódik. ATILA SALVAI