Hidrológiai Közlöny 1975 (55. évfolyam)

7. szám - Dr. Csanády Mihály–dr. Gary S. Logsdon: Kísérletek kadmiumnak ivóvízből történő eltávolítására

296 Hidrológiai Közlöny 1915. 7. sz. Dr. Csanády M.— dr. Gary S. Logsdon: Kísérletek kadmiummal vegyszer-fölösleggel (100 mg/l) 99%-ot meghaladó eredmény is elérhető. A kadmium-koncentráció növekedése a hatásfokot csak kis mértékben rontja. A pH beállítására általában szükség van, ami szóda vagy mész adagolását is szükségessé teszi. A meszes lágyítás csapadéka jól ülepedett. Az alumínium- és vashidroxid esetében viszont a rosszul ülepedő kis pelvhek szerepe jelentősnek bizonyult, ezért a derítést követő szűrés a kad­mium-eltávolítás szempontjából is lényeges. A hazánkban leggyakrabban alkalmazott el­járás, az alumíniumhidroxidos derítés tehát ön­magában általában nem alkalmas a kadmium eltávolítására. Aktív szén alkalmazása az ered­ményt javíthatja, a várható hatás kimérése azon­ban még további vizsgálatokat igényel. IRODALOM [1] Fleischer, M.: Natural sources of some trace elő­ments in the environment, in: Cycling and Control of Metals. Proc. of an Environmental Resources Conf. 1972 Columbus EPA NERC, Cincinnati 1973. p. 3—10. [2] Durum, IV. H. : Occurrence of some trace metals in surface and ground water. Sixteenth Water Quality Conf., University of Illinois, Febr. 12—13, 1974. [3 J Kroner, I'. C. : The occurence of t race metals in surface waters; in : Traces of Heavy Metals in Water" Removal Processes and Monitoring. Proc . of a Symposium, Princeton University 1973. EPA, Reg. II. p. 311—322. [4] Hem, J. D. : Chemistry and occurence of cadmium and zinc in surface water and groundwater. Water Reesources Research, 8 601 — 679 (1972). [5J Csanády M.: Galvánüzemi szennyvíz által okozott talajvíz-szennyezések. Hidrol. Közi. 54. 62—65 (1974). [6] Csanádi) M.: A hazai felszíni vizek réz- és cink­tartalma. Hidrol. Közi. 51. 90—93 (1971). [7] Logsdon, 0. S., Symons, J. M.: Mercury removal by conventional water-treatment techniques. J. AWWA, 65, 554—562 (1973). [8] Logsdon, G. S., Symons, J. M.: Removal of heavy metals by conventional treatment in: Traces of heavy Metals in Water, Removal Processes and Monitoring. Proc. of a Symposium, Princeton Uni­versity, 1973. EPA, Reg. II. p. 225—256. [9] Linstedt, K. D., Houck, C. P., O'Connor, J. T. : Trace element removal in advanced wastewater treatment processes. J . Water Poll. Control Fed. 43. 1507—1513 (1971). [10] Maruyama, T., Hannah, S. A., Cohen, J. M. : Removal metals by physical and chemical treat­ment processes. 45th Annual Conf. WPCF, Atlanta, Georgia, 1972. [11] Argo, D. G., Culp, G. L.: Heavy metals removal in wastewater treatment. Water & Sewage Work 1972. Aug. 62—65. és Szept.; 128—132. [12] Argaman, Y., Weddle, C. L. : The fate of heavy metals in physical-chemical treatment processes. Report on Central Contra Costa (California) pilot­plant investigations, 1973. [13] Posselt, H. S., Weber, W. J.: Removal of cadmium from waters and wastes by sorption on hydrous metal oxides for water treatment. In Chemistry of Water Supply, Treatment & Distribution, p. 89—108. [14] Standard Methods for the Examination of Water and Wastewater 13th Ed., APHA, New York, 1971. [15] International Standards for Drinking Water, WHO, Geneva, 1971. [16] Ga^diener, J. : The chemistry of cadmium in natural water — II. The adsorption of cadmium on river muds and naturally occuring solids. Water Research 8, 157—165 (1974). OnbiTbi no YFLAJIEHHIO KA/TMUJI H3 NHTBEBOM BOÄM JJ-p yahiadu, M. —d-p Jlozcdon, r. C. MccjieaoBaHHH 6unn HanpaBJieHbi Ha BbiiiBJieHHe CTe­neHH YflaJieHHfl KaflMHfl H3 nHTbeBOH BOflbl TpaflHUHOH­HblMH MeTOAaMH BOflOnOflrOTOBKH. OnbiTbi npOBOflHJIHCb B jia6opaTopHbix YCJIOBHSIX. YcTaHOBJiemie CTeneHH Y,AAJIEHH5I KAAMMI NP0H3B0.SH.N0CB PAÄH0H30TONHBIM cnocoßoM. noApoÖHbie pe3yjibTaTbi npeflCTaBJieHbi B BHfle ÄHarpaMM n B Taßjiuuax. IlpH CMilrieHHM ßOJIbmHM H36bITK0M H3BCCTH (pH­11,3) KOHneHTpanHfl KaflMiiH coKpamaeTCíi, npHMcpno, na 3 nopíiflKa. B cjiynae HE06X0FLHM0CTII STOT cnocoß — B CO­qeTaHim c nocJieacTByiotuen aapauweW (pei<ap6omt3a­hhji) — MOweT ßbiTb ycneuiHO npwweHeH ajiíi yflajiem-m KaflMHfl H3 nHTbeBOH BOflbl. OCBCTJlCHHe THflpOOKHCbK) ajlIOMHHHfl npH OßbIMHblX K0HneHTpanH5ix H pH aaeT pecbMa cjiaßbift 3<})(})eKT y«a­jieHHii KaflMHH. YcTaHOBitB H^eajTbHoe 3HaqeHne pH (8,3) H pacxoayn H3JiHuiHee KOJiMMGCTBO pearema, 3(J)(J)ei<T y^a­jienHfl BCii we He npeBbiuiaeT 50—60%. C p0CT0M KOH­HeHTpanuH Kafl.vuiii He Bbi«ep>KHBaeTCH «a>i<e u Takoii ypoBeHb. Pe3yjibTaTbi ocBeTJiemifl iHflpooKHCbio 3-x BajiCHTHOrn >Kejie3a 3HamiTejibH0 Jiymne, XOTJI Towe ciuibHO 3aBHcstT ÓT pH. IlpHMeHjia npaKTHMecKii flonycTHMyio no3y pea­reHTa (20 Mr/ji) h npH pH-8, 3(J)(|)eKT y/iajiemifl cocTaB­jiaeT npiiMepHO 80%; npu pH-8,5 — 8,7 OH B03paciaeT AO 89—94%. EojibuiHM H36biTK0M peareiiTa (100 Mr/ji) MOJKHO «ocTHHb pe3yjibTaTa, npcBwuiamuiero /ia>Ke 99%. POCT KOHUCHTpaUHll l<aflMHyi TOJlbKO HeSHaMHTCJIbHO yxy«uiaeT 3(|)(J)CKT yaajienHH. OOHMHO TpeöyeTcsi ycTa­HOBIITb 3HaMCHlie pH, <IT0 TpCOyCT Ä06aBJieHH5l COflbl HJIH 1I3BCCTH. ripn CMfii MeHiiH M3BCCTbio oca/tow xopomo OCa>KflaCTC5l. B CJiyiae rnflpooKnceH aJiiOMHnnn h >i<ejie3a njioxo oca>K­«aioinHecn MejiKHe xjionbH nrpaioT oneHb BawHyio po^b, n03T0My CTanoBHTCH acHbiM, MTo (l' HJlb TpanHH nocjie ocBCTJieHHyi M0>Ker ßbiTb cymecTBeHHoií c TOMKH 3peHH5i yflaJieHMfl KaflMHH. Tai<HM oöpasoM, nan6ojiee LuiipoKO pacnpocTpaHeHHUH B narneii CTpaHe cnoco6 OCBETJIEHHH rH^pooKHCbio ajnoMii­HIISI caM no ce6e He noaxo ^HT ÄJIA y^ajieHHji IOÍIMHH . IlpMMeHeHiie aKTHBHoro yrjiji HecKOJibKO yjiyiuiaeT pe­^yjibTaro, o/iHai<o KOJiHHecTBeHHoe onpe^ejieHHe o>t<nflae­Moro 3(j)(j)eKTa TpeöyeT aanbHeiínrax nccjie«OBaHi-iH. Experimenls for removal of cadmiuiü from drinking water M. Csanády, G. S. Logsdon The object of the investigation was to iearn the effi­ciency of conventional water treatment processes for cadmium removal. Bench-scale experiments were car­ried out using the jar test apparatus. Cadmium removal was measured by radioactive tracer technique. The initial cadmium concentration usually was 0.03 mg/1. Detailed results are shown in figures and tables. The concentration of cadmium may be decreased in excess of two orders of magnitude by the high lime softening process (pH=11.3). In an emergency the me­thod may be used together with recarbonation to remove cadmium from drinking water. At typical pH values and alum concentrations, cad­mium removal by alum coagulation was rather poor. At pH 8.3, the optimal value, 50 to 60 percent removal could be attained by using a high concentration of alum. When other conditions were constant, cadmium removal decreased as the initial cadmium content increased. Ferric coagulation was more effective than alum co­agulation, b111: it was quite dependent upon pH. At pH 7 results were poor, but with a 20 mg/1 dose of coagulant, removal was about 80 percent at pH 8 and 89 to 94 per­cent at pH 8.5 — 8.7. Removal with 100 mg/1 of coagu­i

Next

/
Thumbnails
Contents