Hidrológiai Közlöny 1963 (43. évfolyam)

2. szám - Hozzászólások Dr. Ivicsics Lajos: „Gondolatok a hidromechanikai kismintavizsgálatok” c. tanulmányához (Dr. V. Nagy Imre–dr. Szigyártó Zoltán)

160 Hidrológiai Közlöny 1963. 2. sz. Hozzászólás. Dr. Ivicsics Lajos tanulmányához Ezek az eredmények azt mutatják, hogy az elméleti vizsgálat ezen a téren is további nagy lehetőségeket rejt magában. A differenciálegyenletek bármely rendszere s így jelen esetben a nyúlós folyadék mozgás­egyenletei különböző, igen nagyszámú jelenséget foglalnak magukban, tehát az egyenletek vég­telen nagy számú megoldása lehetséges. Minden egyes megoldást a megszabott korlátozó feltéte­lek összessége határoz meg. Ezeknek a feltételek­nek, amelyeket az adott egyenletrendszerhez kap­csolunk, olyanoknak kell lenniök, hogy segítsé­gükkel az egyenletrendszer egyértelmű megoldását nyerjük, azaz egyértelmű módon határozzuk meg az adott jelenséget. Éppen ez az egyértelműség jelenti a' legelső alapfeltételét minden modelle­zésnek . így gyakran felvetődik pl. az a kétely, amely szerint a dimenzióanalízisből és a hasonlósági elméletből levonható következtetések nem azonos értékűek. A valóságban azonban ez a kérdés fel sem vetődhet akkor, ha a kiválasztott jelenség­csoportra vonatkozó, meghatározó paraméterek rendszerét már előzőleg felállítottuk. Igaz ehhez az szükséges, hogy előzőleg alaposan elemezzük a feladat fizikai lényegét, s feltétlenül figyelembe vegyük anhak sajátosságait. A meghatározó para­méterek rendszerének felállítása a vizsgált jelen­ség általános megfogalmazása alapján történik, amikor is különböző fajta, tájékoztató jellegű feltételezések, kísérleti adatok, statisztikai követ­keztetések felhasználása, vagy a vizsgált jelenséget közelítőleg vagy pontosan leíró egyenletek fel­állítása szükséges (a kezdeti és határfeltételek, fizikai természetű korlátozások megadásával). A hasonlóság feltételei, valamint a meghatározó para­méterek rendszere teljesen azonos is lehet akkor is, amikor a feladat felállításának tényleges fizikai kapcsolatai és a folyamatot leíró egyenletek kü­lönbözők ugyan, de az egyenletek széles határok között variálhatók. A meghatározó paraméterrendszer kiválasz­tása szoros kapcsolatban van a vizsgált jelenség lefolyásának, fizikai lényegének megismerésével, s mint ilyen, tulajdonképpen a feladat, a kérdés helyes felállításának összetevő részét képezi. Igen megnehezíti az egyértelmű tájékozódást az a körülmény, hogy a dinamikai hasonlóság fogalmát sokszor igen leegyszerűsített formában fogják fel. Általában azt mondhatjuk, hogy két jelenség dinamikailag hasonló akkor, ha az egyik jelenség adott jellemzőinek alapján egy egyszerű átszámítással megkaphatjuk a másik jelenség jellemzőit, s az átszámításhoz csupán az átszá­mítási méretarányokat kell ismerni. Az ilyen értelmezés a közvetlen gyakorlati igényeket ki­elégítheti, s ugyanakkor azonban rendkívüli mér­tékben leegyszerűsíti s lerövidíti az általános hasonlósági elméletet. Megjegyzendő azonban, hogy a fenti meg­állapítás általános formában akkor is érvényes, amikor két jelenség hasonlósága általánosított formában kerül meghatározásra, tehát olyankor is, amikor az általános formáknak megfelelő átszámítás csupán a jellemzők egy bizonyos, külön­leges, a jelenséget teljesen meghatározó rendsze­rére vonatkozóan lehetséges, amelyek viszont módot nyújtanak más, tetszőleges, olyan jellemzők meghatározására is, amelyek egyébként egyszerű átszámítás alapján már nem állíthatók fel. így pl. a koordináták affin transzformációinak meg­felelő hasonlóság a dimenzióanalízis módszereivel vizsgálható, ha a Descartes-féle koordináta rend­szer különböző tengelyei mentén, különböző mé­rési egységeket veszünk fel. 4. Javaslatok A hozzászólásban vázolt okfejtések össze­foglalásaként a hasonlósági elmélet továbbfejleszté­sének főbb irányaira vonatkozóan a következő el­gondolásokat vetjük fel: a) További elmélyült vizsgálatokat kell vé­gezni az egy- és kétfázisú közegekre alkalmazott hidrodinamikai alapegyenletek invariáns tulaj­donságaiban rejlő lehetőségek felkutatására, a hasonlóság feltételei és a meghatározó paraméter­rendszerek közötti kapcsolatok tisztázására. b) A turbulens sebességtér pulzációs össze­tevőire vonatkozó mérések segítségével, a köze­pes hidraulikai jellemzők fogalmáról át kell térni a részlet vizsgálatok alapján nyert turbulencia jellemzők fogalmának használatára s ily módon a turbulenciaintenzitás s az örvények átlagos méretén keresztül történő vagy más egyéb jel­lemzőket felhasználó modellezés alkalmazására. c) Szélesíteni kell a rokon jelenségek körei­ben alkalmazható invariáns mennyiségcsoportok, különböző dimenzió nélküli, morfometriai össze­függések kísérleti úton történő meghatározásával kapcsolatos munkát, mint az általános hasonlóság­elmélet továbbfejlesztésének egyik lehetséges módját. IRODALOM [1] Ivicsics L. : Gondolatok a Uidromechanikai kis­mintavizsgálatok elméletével kapcsolatban. Hid­rológiai Közlöny. 1961. 5. [2] Velikanov, M. A. : Dinamika ruszlovih patokov II. Manéva, 1955. [3] Lenin, V. I. : Filozófiai füzetek, Bp. 1955. [4] Krilov, A. N. : Szobranyije szoosinyenyij t. 7. M.—L. 1936. [5] Martinot—Lagarde, A. : Sur l'application des variables sans dimension aux phenomenes dis­continus. Comptes Rendus 223. (1946). [6] Banach, 8. : Theorie des operations lineaires. Warsau), 1933. [7] Jeans, J. : Eleetrieity and Magnetism. Cambridge Univ. Press. 1941. [8] Kuros, A. G. : Teorija grupp. M—L. 1953. [9-] Kurant, Gilbert: Metodi matematicseszkoj fizika. M—L. 1945. [10] Painleve, P. : Legons sur la resistance des fluidé. Paris. 1930. [11] Wislicenus G. F. : Fluid Mechanics of Turbo­machinery. NewYork. 1946. [12] Einstein, N. A.—Müller, R. : Über die Áhnlich­keit bei flussbaulichen Modell-Versuchen. Schweiz. Arch. 5. 1939.

Next

/
Thumbnails
Contents