Hidrológiai Közlöny 1960 (40. évfolyam)
6. szám - Salamin Pál: A domborzat befolyása a hó halmozódására és olvadására
450 Hidrológiai Közlöny 1960. 6. sz. Salamin F.: .4 do:nborzat befolyása a hó halmozódásóra na AHe ripocTopHoií aojiiihh, na cKoeoropax, Ha bo3bi>iuieHHOCTHX, Ha Bepmimax ii ce/yiax. Ha bccx anix Mec•rax n03T0My BJia>KHOCTb CHe>KHoro nOKpona MBJiíieTCH He SojibujoH, a GőteMHhiii Bee 6ÓJibiiioíi. CneroBoii noKpois MCAJICHHO ncwe3aeT Ha CKarax rop 3 — C — B-oro pacIIOJIO>KeHHH, H MaCTO B Y3KI1X BTOpOCTCneHHblX flOJIHHaX. 3Aecb BjiawHocTb booSiuc Sojibiuan, a oS-be.MHbin Bee neőojibuioii. CTeneHb U3MEHEMM EJIANCHOCMU b aaHHuíí MOMeHT na Bceü BOAOCöopHoii ruiomaflH flOCTHraef bcjihMHHy 20 mm. A CTeneHb II3M€HCHUH SAAVCHOCMU KOJieöaCTCH MOKAV BejlHMHHa.MH 0,01 II 0,02, HO MOM<eT flOCTIIMb ii Bejiiimmy 0,06. 2. BjinjiHiie crpaHbi CBCTa (@ue. 1—6., rnaÓA. 2—3.) y>KC IipOSlBJlflCTCfl Őonec 0AH03H3MH0, MCM BJIHHHHe viaKpocfiopM iiOBepxHOcrn. CoAepMvaHtie BOAH (BJia>KHOCTb) Ha reppiiTopujix c ceeepmiM a nonmu ceeepnuM pacnoAoyiceHueM >iBji>ieTcji őojibWHM, a oőTjeMHuíi Bee ne ÖOJIbUIHM. Ha TeppHTOpMíIX C WWHbl.M II nOMTH IO>KHbIM paeiiojioHíCHiieM n.ueeToi oöpaTHoe iiojio>i<eHiie. Pa3jiiiMiie paciioiio>KeHii>i no CTopoHa.M cBera OAH3KO He HMeeT ÖOJIblUOrO HHCJieHHOI'O 3Ha4CHII>I, L'CJIII COIIOCTaB. I>ICTC>I CHeroBoii noi<poB TcppiiTopHii pacnojioraioiuetícfl COOTBCTCTBCHHO KpyroBOMy ceKTopy c 225° no HanpaBjieHHio 3 — IO — B, co CHeroBbi.M noi<poBOM TeppHTopiifi, pacnojiaraiomiixoi no KpyroBo.via ceKTopy c 135,, no HanpaBJieiniio C3 C — CB. CTeneHb u3MenenuH oöbeMnoeo Beca B STOM cjiynae KOJieöaeTCíi MOK^y nejiimiiHaMii 0,00 II 0,025 Ha nojiornx ci<aTax ropncToíi MCCTHOCTH. 3ra MOJKCT YBEJINMIBATBOI AO BeJinmiHbi 0,045 Ha KpyTbix CKaTax rop. A CTeneHb u3MeneHUH SAajicnocmu IIMeeT BeJIHMHHy TOJIbKO B HeCKOJlbKHX MM-X Ha öojiee nojiornx ci<aTax n MO>KCT AOCIMATB 50 MM na KpyTbix ci<aTax ropncTon MCCTHOCTH. Ha loxcHbtx cmopouax TajiHiie iaci'0 iipoiicxoAirr Ha HecKOJibKO neAejn. paHbme, MGM rAe-jiiiöo B ApvroM MCCTe. TaKii.M 0öpa30M BjiHflHiie CTpaHbl CBCTa OCOÖeHHO PC3K0 npOHBJIHeTCH B KpyTblX AOJiHHax, jie>Kamnx IIO 3—B-o,My naiipaBJicHiiio, TAC AauHbie cHeroBoro noicpoua 6yKBajii>H0 KHKHIJX cropoH Kcocoropoi! MOXvHO cparsHiiTb c AaHHbiMH ceBepHbix CTOpOH CKOCOI'OpOB. 3. BjniMHiie BbicoTbi ((pui. I -')., maÖA. 2—3.) TaK>KC ÍIBJIHeTCSI 0AH03Ha iIHbIM BOOÖIJie. BAajKHOCmb yneAumieaemcn c noebiuieimeM eucomu, a oöi.eMHi.iíí Bee yMcnbtuaemcü. Cmenenb lUMenemiH e/iaMciiacmu B KpaííHCH Mepe ÖBIBAET OKOJIO 40 MM, a y oöbeMnoeo eeca B ÖOJIiniiHCTBe cjiyqaeB KOAeőaeToi Mewcay BeJiHMimaMH 0,025 H 0,040, HO MO>KCT AOCTinib H BeJiiiMMHy 0,100. 3TO ,'ieííCTBIITCJIbHO AaHHOrO MOMCHTa BHyTplI Bccil BOAOCÖOpiioií njiomaAH. 4. Ha őoAee noAoeux CKamax BeHrepcKoro Mewropbji iiaiiöojibuiee BJIIIHHIIC HMeeT eucomnoe nOAOMenue. A Ha BOAOCőopbi e öoAee KpymbiMu CKamaMii, peuiaiomn.M BJIIIHHIIEM EMITAETOI BJHIÍIHIIC CTPAHBI CBCT3 (maÖA. 2-3.). 5. Pa3Hbie <f)anmopbi peAbecfia a pacmemiH oi<a3MnaioT coBMecTHOe BJiiuiHiie (<pue. 7., maŐA. 1—6.). Co Bpe.MeHCM IIX COBMeCTHbIM AeííCTBIieM MOKCT ypaBHOBemiiBaTboi nepeMeHHbie BejiHHiimd xapaKTepncTiiK CHeroBoro noKpoBa, no mo>kct ii CYMMiipoBaTb 0AH03HaHHbie bjihhhiih. B noejiCAHCM cnyHae CTeneHb ii3MeHenuH eAaxcHocmti Mo>KeT AOCTimb, Aa>Ke n iipeBocxoAin'b bcjihMHHy 100 mm, a CTeneHbio u3MeHemm ofíbeMHoeo eeca AOCTHraeTCH H BeuHHHHa 0,20. HaKOHeu yKa3biBaeM Ha TO, MTO AaHHan cTaTba Aaer B03M0>KH0CTb COOTBCTCTBYiomero pacnojioweHiiH H3MepiiTejibHbix CTaHUiin, HaóJiioAaioiniix HenpepuBHO, Aajiee Ha ocHOBaHim pesyjibTaTois necKOJibKO CTanunn MO'/KHO OIICHIITb II KOJIH'ICCTBO BOAbi, HaKanJIIIBaCMOÍÍ B eneroBOM noKpoBe ropbi. Hfl'eet of Topography on (he Aecumulation and Melting of Snoiv By P. Salamin This paper is based primarily on site measurements and observations carried ont in the Mátra mountain rangé in North-eastern Hungary (oxer the catchment area of t ho Kövicses Creek) from February to April 1051). (Fii/s 1—3 and Tables 1 and 2). Results obtained between 1954 and 1960 partly over other regions (Table 3) are, however, aiso taken into account. The paper presents an interesting example for systematical site, investigations extending over a large area. .More important conclusions of the paper can be listed as follows : 1. Tlie fundamental relief fealures cf the surface (Figs. 4 and 5, Tables 2 and 3) unquestionably affect the accumulation and melting ofsnow. However, corresponding to the involved spatial position of the surface, this influcnce is not always unambiguous. The amount of fresh snow may vary between the widest limits over any part of the surface, depending primariy on the direction and velocity of wind. The effect of the latter is most pronounced over plateaus, ridges and in saddles, and is somewhat less strong over valley bottoms. Snow melts rapidly on wide valley bottoms, on hillsides facing south, on plateaus, ridges and saddles. Over these areas the water content of the snow cover is generally low, wliile the density is high. Snow disappears slowly from mountain sides facing W, N and E, and from narrow side valleys. 1 ligh water content values and low densities can usually be encountered here. Changes in the water content at any given time, within the entire catchment area may attain values as high as 20 mm. Changes in density may vary from 0.01 to 0.02, but values as high as O.Oli were alsó recorded. 2. The effect of orientation (Figs. 1 to 6, Tables 2 and 3) is more uniform than that of the fundamental relief form. Over areas facing north or approximately north the water content is high and densities are low, while the situation is reversed over southerly slopes. Differenoes in orientation correspond, however, to very slight numerical effects if the snow cover over the 225 deg. arcli of the \V — S — E areas is compared to the 135 deg. arcli of the Nff — N -— NE areas. Changes in density are from 0.00 to 0.025 over mildly sloping mountainous regions, and may rise to 0.045 over steeper hillsides. Changes in water content attain but a few mm over mild slopes, but may be as high as 50 mm over steep sides. Over slopes fully exposed to south snowmelt may take place several weeks earlier than any where clse. Now the numerical effect is appreciable. The effect of orientation is this partieularly pronounced in valleys running W — E, where data applying to the snow cover over the southern slope can be compared to those relating to the slope facing north. 3. The effect of altitude (Figs. 4 and 5, Tables 2 and 3) is alsó fairly uniform. The water content increases with altitude, while density decreases aceordingly. Changes in water content attain in extreme cases 40 mm, while changes in density vary at any given time and within the entire catchment area between 0.025 and 0.040, but may attain the 0.100 value as well. 4. In the Hungárián Central Rangé, over mild slopes, the most pronounced factor is altitude. Over catchment areas composed of several steeply inclined parts, the effect due to differences in orientation may become prin edomant (Tables 2 and 3). 5. Various topographical factors and vegetation act simultaneouslv (Fig. 7, Tables 4 to 6). Simultaneous action may equalize changes occurring during ageing in the characteristic values of the snow cover, but effects of identical sign may alsó be superimposed. In the latter ease the changes in water content may attain as much as 100 mm, whereas changes in density nmy be as high as 0.20. It should finally be pointed out, that the proper location of continuously observing recording stations in Hungárián mountainous regions is rendered possiblo by the results of these observations, and the amount of water stored in the snow cover overlying the entire mountain rangé can be estimated from data recorded by a small number of stations.