Hidrológiai Közlöny 1949 (29. évfolyam)

1-2. szám - E. MOSONYI, D. Eng.: Natural storage effect in the mountainous drainage areras of the Carpathian Basin

It is evident that the value of y is dependent mainly on the perviousness of the watershed. Al­though perviousness of the watershted is influenced primarly by the geological structure, it is effected by topographical conditions and forestation as well. It may be stated even on the basis of thteore­tical considerations that any increase of the drainage area causes a decrease of <t. For expressing the relationship between the coefficient y and the drainage artea, the author suggests the following equation: where F is thte drainage area in km 2, Equation (16) can be written as F—Fl~ m\ (17) In a ssemi-logarithmic system the above func­tion i.s shown by a straight line fixed by the <p 0 and F values. Table I. contains the characteristic values belonging to 12 gage stations. For teach of these stations the decisive miass curves, all based on actual run-off data, were plotted accurately by the author and so it became possible to determine actual reservoir capacities (S) and totál annual •quantities of run-off (V). Using formula (12a), the actual value of natural storage cotefficient is as follows: Figure 3. indicates the points corresponding to íj, values in function of the drainage area (in a semi-logarithmic system). Drainage areas in the Carpathian Basin, with regard to natural storage effect, may be devided into three groups: 1. Drainage area of impervious character (Sign: A); 2. üraimge area of semi-pervious character (Sign: B); 3. Drainage area of pervious character (Sign: C). BOGDÁNFY's hydrological and the LÓCZY— TELEKY—PAPP geological maps may give somé idea about the character of these mountainous drainage areas. Based partly on the above men­tioned maps and partly on the author's investiga­tions, their character is alsó shown in Table I. For theoretical determinaition of <p, thte author suggests the following three equations each of which belongs to one of the above mentioned types of drainage areas : impervious (A) '—•"('-Sí) semi-pervious (B) -'•"•('-WJ » 9> pervious (C) TABLE I. — I. TÁBLÁZAT. Actual and theoretical values of coefficient <t characteristic for the relatíve extremity of run-off. A vízjárás viszonylagos szélsőségességét jellemző <p tényező tényleges és elméleti értékei. 3. i. 5. e. 7. 8. 9. 10. Station A szelvény River Drainage area A vízgyűjtőterület lotal run-off of the decisive storage-year Necessary capa­city derived front detailed investigations Részletes vizs­gálattal meg­határozott tározószükséglet S hm3 Value of the coefficient 'P A <f tényező értéke J Sign Jele Name megnevezés Vízfolyás Size területe F km' Qiaracter 1 jellegei A mértékadó év vízhozam­összege V hm» Necessary capa­city derived front detailed investigations Részletes vizs­gálattal meg­határozott tározószükséglet S hm3 actual 3 tényleg 2 theoretical3 elméletileg 3 °/o 1. Petrovabisztra .... Visó 1.542 B (A) 740-0 285-0 0-622 0-636 4-2-3 2. Terebesfejérpatak . . . Tisza 1.192 B 663-0 247-0 0-602 0610 + 1-3 3. Dombó Tarae Tol B 574-0 225-0 0-632 0 632 00 4. Bolcárja Talabor 438 B 274-0 1110 0-653 0-659 4-0-9 5. Perecseny Ung 1.786 B 633-0 231-0 0-589 0-590 4-0-2 6. Csernoholova Lyuta 167 B 89-9 39-5 0-709 0-706 -0-4 7. Jádvölgy Sebes-Körös 1.156 A 382-0 179-0 0-756 0-764 4-1-1 8. Palotailva Maros 1.732 A 458-0 212-0 0-746 0-746 0-0 9. Alsófancsal öörgény 236 A 134-0 67-0 0-807 0-830 4-2-9 10. Málnásfürdő Olt 1.455 A (B) 362-0 - 165 0 0-735 0-754 4-2-6 11. Tokaj Tisza 49.083 A—B 9500-0 3300-0 0-560 0-520 -7-2 12. Márk-villa Békás 41 C 15 3 6-5 0 685 0-700 4-2-2 13. Letenye ..... Mura 13.02ti — 4)50 0 1050.0 0-419 — — 1 Note: A — impervious, B = semi pervious, C~ pervious _ S ( Log F 1 Jelölések: A = vízzáró, B = télig áteresztő, C = vízáteresztő. 2 f — Q.gg V 3 ^ = f" Log P J 13

Next

/
Thumbnails
Contents