Fogorvosi szemle, 2021 (114. évfolyam, 1-4. szám)
2021-06-01 / 2. szám
FOGORVOSI SZEMLE 114. évf. 2. sz. 2021. n 51 Irodalom 1. ALIFIU-SEGBAYA F, VARMA S, LIESCHKE GJ, GEORGE R: Biocompatibility of Photopolymers in 3D Printing. 3D Print Addit Manuf 2017; 4: 185–191. https://doi.org/10.1089/3dp.2017.0064 2. BULCAO RP, FREITAS FA, VENTURINI CG, DALLEGRAVE E, DURGANTE J, GÖETHEL G, et al: Acute and Subchronic Toxicity Evaluation of Poly(ɛ -Caprolactone) Lipid-Core Nanocapsules in Rats. Toxicol Sci 2012; 132: 162–176. https://doi.org/10.1093/toxsci/kfs334 3. CONNERT T, ZEHNDER MS, AMATO M, WEIGER R, KÜHL S, KRASTIL G: Microguided endodontics: A method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J 2018; 51: 247–255. https://doi.org/10.1111/iej.12809 4. CORRALES T, LARRAZA I, CATALINA F, PORTOLÉS T, RAMÍREZ-SANTILLÁN, MATESANZ M, et al: In Vitro Biocompatibility and Antimicrobial Activity of Poly(ɛ -caprolactone)/Montmorillonite Nanocomposites. Biomacromolecules 2012; 13: 4247–4256. https://doi.org/10.1021/bm301537g 5. CZEKANSKA EM, STODDART MJ, RICHARDS RG, HAYES JS: In search of an osteoblast cell model for in vitro research. Eur Cell Mater 2012; 24: 1–17. https://doi.org/10.22203/ecm.v024a01 6. DECKER C: Kinetic study and new applications of UV radiation curing. Macromol Rapid Comm 2002; 23: 1067–1093. https://doi.org/10.1002/marc.200290014 7. DODZIUK H: Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 2016; 13: 283–293. https://doi.org/10.5114/kitp.2016.62625 8. GROTH C, KRAVITZ ND, JONES PE, GRAHAM JW, REDMOND WR: Three-dimensional printing technology. J Clin Orthod 2014; 48: 475–485. 9. HEREATH HM, DI SILVIO L, EVANS JR: Osteoblast response to zirconia surfaces with different topographies. Mater Sci Eng C Mater Biol Appl 2015; 57: 363–370. https://doi.org/10.1016/j.msec.2015.07.052 10. http://www.padtinc.com/blog/padt-medical/on-thebiocompatibility-of-polyjet-med610 (2018.12.27.) 11. https://web.archive.org/web/20171011181253 /http://usglobalimages.stratasys.com/Main/Files/MSDS/MED610_ Usage_Terms.pdf?v=635888173072389415 (2019.01.22.) 12. https://web.archive.org/web/20190204083404/ https://www.sys-uk.com/wp-content/uploads/2016/01/MSDSClear-Bio-Compatible-MED610-English-US.pdf (2019.01.17.) 13. https://www.stratasys.com/materials/search/biocompatible (2018.12.26.) 14. https://www.stratasys.com/materials/search/dental-materials s(2019.02.03.) 15. JÁUREGUI I, SANCHEZ J, SEGUROLA A, GALÁN C, SERAS Y, GAMBOA PM: Allergic contact dermatitis by isobornyl acrylate in glucose monitoring devices: Report of two cases. Contact Dermatitis 2019; 81: 2019–2220. https://doi.org/10.1111/cod.13349 16. LEONHARDT S, KLARE M, SCHEER M, FISCHER T, CORDES B, EBLENKAMP M: Biocompatibility of photopolymers for additive manufacturing. CDBME 2016; 2: 113–116. https://doi.org/10.1515/cdbme-2016-0028 17. MACDONALD NP, ZHU F, HALL CJ, REBOUD J, CROSIER PS, PATTON EE, et al: Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip 2016; 16: 291–297. https://doi.org/10.1039/C5LC01374G 18. MINE Y, URAKAMI T, MATSUURA D: Allergic contact dermatitis caused by isobornyl acrylate when using the FreeStyle® Libre. J Diabes Investig 2019; 10: 1382–1384. https://doi.org/10.1111/jdi.13023 19. OPPEL E, HÖGG C, SUMMER B, RUEFF F, REICHL FX, KAMANN S: Isobornyl acrylate contained in the insulin patch pump OmniPod as the cause of severe allergic contact dermatitis. Contact Dermatitis 2018 79: 178–180. https://doi.org/10.1111/cod.13017 20. ROSS C, PANDAV SS, LI YQ, NGUYEN DQ, BEIRNE S, WALLACE GG, et al: Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmol 2015; 133: 549–554. https://doi.org/10.1001/jamaophthalmol.2015.30 21. SALDANA L, BENSIAMAR F, BORÉ A, VILABOA N: In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomater 2011; 12: 4210–4221. https://doi.org/10.1016/j.actbio.2011.07.019 22. SCHMELZER E, OVER P, GRIDELLI B, GERLACH JC: Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. J Med Biol Eng 2016; 36: 153–167. https://doi.org/10.1007/s40846-016-0118-z 23. SOUZA NLGD, MUNK M, BRANDAO HM, DE OLIVEIRA LFC: Cytotoxicity and Compatibility of Polymeric Blend: Evaluation of the Cytotoxicity in Fibroblast Bovine Cells and Compatibility of Poly (ɛ -Caprolactone)/Poly(Methyl Methacrylate-co-Butyl Methacrylate) Blend Films. Polym-Plast Technol 2017; 56: 1076–1083. https://doi.org/10.1080/03602559.2016.1253735 24. STRBAC GD, SCHNAPPAUF A, GIANNIS K, BERRL MH, MORITZ A, ULM C: Guided Autotransplantation of Teeth: A Novel Method Using Virtually Planned 3-dimensional Templates. J Endod 2016; 42: 1844–1850. https://doi.org/10.1016/j.joen.2016.08.021 25. szaloki m, JavaDi H, kHanDan s, yousseF as, gáll J, HegeDűs Cs: 3D nyomtatható biokompatibilis modell alapanyagok polimerizációs tulajdonságainak vizsgálata. Fogorvosi Szemle 2019; 112: 70–76. https://doi.org/10.33891/FSZ.112.3.70-76 26. WALSH ME, OSTRINSKAYA A, SORENSEN MT, KONG DS, CARR PA: 3D-Printable Materials for Microbial Liquid Culture. 3D Print Addit Manuf 2016; 3: 113–118. https://doi.org/10.1089/3dp.2016.0007 27. WILLIAMS CG, MALIK AN, KIM TK, MANSON PN, ELISSEEFF JH: Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005; 26: 1211–1218. https://doi.org/10.1016/j.biomaterials.2004.04.024 28. YAMAJI K, KAWASAKI Y, YOSHITOME K, MATSUNAGA H, SENDO T: Quantitation and human monocyte cytotoxicity of the polymerization agent 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) from three brands of aqueous injection solution. Biol Pharm Bull 2012; 35: 1821–1825. https://doi.org/10.1248/bpb.b12-00210