Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Bogdan Tropak: Some algebraic properties of linear recurrences

- 75 ­3. A connection between gCx) and F . g Lemma 2 . Let gCx) = x k - A x k ~ 1 - ... - A, x - A, , i k -1 k * u(x) = x° - B x' 3" 1 - B x — B , 1 a -1 a ' v(x) = x r - G x r ~ 1 - ... - G X — C 1 r -1 r and let gCx) = u(x) v(x) . Fg [ Xo' ' * * * Xk~i} is the associa t­e d form to gCx) then F 9 where F^ and F^ are forms associated to u(x) and vCx), respectively and r Zj =-IC r. tX j+ l, j=0,l, . . . ,s~l with C 0=-l, t = o e = - 2 B a. nX. + n, i=0,l,...,r-l with B 0=-l. n = 0 Proo f: For the brevity put al = ~ Ak-l > 1 * 1 * k > bn - " B s-n > 1 ^ n ^ s , c = - C , 1 £ m <1 r ín r -m * and let a = <x be a root of uCx). By C35 and C4) we have k k k z a = 2 S t<«>X t_ t = 2 X t_ l 2 a,« 1" 1 = t =i t =i I=t k k = 2 X. , 2 2 c b a m+ n" 1 = < 6- t -l m n t =1 I =t m + n = t O^rn^r O^n^B

Next

/
Thumbnails
Contents