Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Bogdan Tropak: Some algebraic properties of linear recurrences

- 72 ­Since k kCk-O n g'[a.j = C— 1) 2 .CdetD) 2 then from C2), C7), CS) and C5!> we get k fg( Xo" •• ' Xk-l]' CdetD> 2" k " [ C­1>i_ 1yi det D) " kCk-l ) k k = CdetD> zC— 1) 2 n y . n. - F [x o > ...,x k_ t) . 1=1 V = 1 I. This ends the proof. Theorem 1 . Ccomp. Thm. 1 in Kiss, 1083), The form (^o' " * * ' Xk-1J ha s rational integer coefficients and the coefficient of x k_i i s one. Furthermore for all integer n^O, where F Q= F g (g q,G ±, . . . , G k _ 4J . Proof: By C3) and C4> we can write k k -1 2 g, Ccc. > X. = 2 u ö I i l-l m l I =1 where u = u X^, . . . ,X, , are linear forms with m m ^ O k-lj rational integer coefficients and then k F 9 ( xo>--' xk-J - n L = 1 k -1 2 u oT TO V TO — O and the coefficients of u . . u. k „ 1 are rational as O k - 1 symmetrical polynomials in . Since a. 's are algebraic integers then these coefficients and in particulary

Next

/
Thumbnails
Contents