Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2004. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 31)

LUCA, F., Primitive divisors of Lucas sequences and prime factors of ... and ...

24 F. Luca [2] CARMICHAEL , R. D., On the numerical factors of arithmetic forms a n ± ß n, Ann. of Math. 15 (1913), 30-70. [3] COHN, J. H. E., The Diophantine equation x 4 + 1 = Dy 2, Math. Comp. 66 no. 219 (1997), 1347-1351. [4] HARISTOY, J,, Equations diophantiennes exponentielles, Prépublications de IRMA 029, 2003. [5] HUA, L.-K., On the least solution to Pell equation, Dull. Amer. Math. Soc. 48 (1942), 731-735; Selected papers , Springer, New York, 1983, 119-123. [6] LEHMER, D. H., On a problem of Stornier, Illinois J. Math. 8 (1964), 57-79. [7] MABKHOUT, M., Minorationde P(x 4 + 1), Rend. Sem. Fac. Sei. Univ. Cagliari 63 no. 2 (1993), 135-148. [8] MIGNOTTE, M., P(x 2 + l) > 17 si x > 240, C.R. Acad. Sei. Paris Sér. I Math. 301 no. 13 (1985), 661 664. [9] MUREDDU, M., A lower bound for P(x 4-{- 1), Ann. Fac. Sei. Toulouse Math. (5) 8 no. 2 (1986/1987), 109-119. [10] SIIOREY, T. N., TIJDEMAN, R., Exponential diophantine equations , Cam­bridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986. Florian Luca Instituto de Matemáticas Universidad Nációnál Autónoma de Mexico C.P. 58180, Morelia, Michoacán, Mexico E-mail: fiuca@matmor.unam.mx

Next

/
Thumbnails
Contents