Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 2004. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 31)
CINCURA, J., SALÁT, T. and VISNYAI, T., On separately continuous functions R
18 «T . Cincura, T. Salát, T. Visnyai [3] DRAHOVSKY, S., SALÁT, T., TOMA, V., Points of uniform convergence and oscillation of sequences of functions, Real Anal. Exchange 20 (1994-95), 753767. [4] DZAGNIDZE, O. P., Separately continuous functions in a new sense are continuous, Real Anal. Exchange 24 (1998-99), 695-702. [5] GOFFMAN, C., Reelle Funktionen , Bibiographisches Institut, MannheimWien-Zürich, 1976. [6] KURATOWSKI, K., Topologie /, PWN, Warsaw, 1958. [7] Legén, A., Salát, T., On some applications of the category method in the theory of sequence spaces , Mat.-fyz. cas. SAV (1964), 217-233 (Russian). [8] MAREUS, S., On functions continuous in each variable, Doklady AN SSSR 112 (1957), 812-814 (Russian). [9] SALAT, T., On transfinite sequences of B-measurable functions, Fund. Math. LXXVIII (1973), 157-162. [10] SLERPINSKI, W., Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. I (1920), 132-141. [11] SIERPINSKI, W., Sur une propriété de fonctions de deux variables reelles, continues par rapport ä chacune de variables, Puhl. Math. Univ. Belgrade 1 (1932), 125-128. [12] SlKORSKI, R., Real Functions /, PWN, Warsaw, 1958 (Polish). [13] TOLSTOV, G. P., On partial derivatives, Izv. Akad. Nauk SSSR 13 (1949), 425-446 (Russian). [14] VRÍO, V., Some questions connected with the quasicontinuity in metric space (Dissertation), PriF UK, Bratislava , 1980 (Slovak). J. Cincura, T. Visnyai Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia E-mail: [cincura,visnyai]@fmph.uniba.sk